Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
In this article, we introduce a two-component generalization for a new generalization type of the short pulse equation was recently found by Hone and his collaborators. The coupled of nonlinear equations is analyzed from the viewpoint of Lie’s method of a continuous group of point transformations. Our results show the symmetries that the system of nonlinear equations can admit, as well as the admitting of the three-dimensional Lie algebra. Moreover, the Lie brackets for the independent vectors field are presented. Similarity reduction for the system is also discussed.
In this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
In this paper we will study some of the properties of an operator by looking at the associated S-act of this operator, and conversely. We look at some operators, like one to one operators, onto operators. On the other hand, we look at some act theoretic concepts, like faithful acts, finitely generated acts, singular acts, separated acts, torsion free acts and noetherian acts. We try to determine what properties of T make the associated S-act has any of these properties.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
This paper is concerned with introducing and studying the new approximation operators based on a finite family of d. g. 'swhich are the core concept in this paper. In addition, we study generalization of some Pawlak's concepts and we offer generalize the definition of accuracy measure of approximations by using a finite family of d. g. 's.
Convergence prop erties of Jackson polynomials have been considered by Zugmund
[1,ch.X] in (1959) and J.Szbados [2], (p =ï‚¥) while in (1983) V.A.Popov and J.Szabados [3]
(1 ï‚£p ï‚£ ï‚¥) have proved a direct inequality for Jackson polynomials in L
p-sp ace of 2ï°-periodic bounded Riemann integrable functions (f R) in terms of some modulus of
continuity .
In 1991 S.K.Jassim proved direct and inverse inequality for Jackson polynomials in
locally global norms (L
ï¤,p) of 2ï°-p eriodic bounded measurable functions (f Lï‚¥) in terms of
suitable Peetre K-functional [4].
Now the aim of our paper is to proved direct and inverse inequalities for Jackson
polynomials
A topological index, commonly referred to as a connectivity index, is a molecular structural descriptor that describes a chemical compound's topology. Topological indices are a major topic in graph theory. In this paper, we first define a new graph, which is a concept from the coronavirus, called a corona graph, and then we give some theoretical results for the Wiener and the hyper Wiener index of a graph, according to ( the number of pairs of vertices (u, v) of G that are at a distance . Moreover, calculate some topological indices degree-based, such as the first and second Zagreb index, , and index, and first and second Gourava index for the recent graph. In addition, we introduced a new topological index, the , w
... Show MoreMany approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.