Preferred Language
Articles
/
ijs-4426
Solvability of (λ, μ)-Commuting Operator Equations for Bounded Generalization of Hyponormal Operators
...Show More Authors

Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Bounded Solutions of the Second Order Differential Equation x ?+f(x) x ?+g(x)=u(t)
...Show More Authors

In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Composition operator induced by a polynomial of degree n
...Show More Authors

In this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.

View Publication Preview PDF
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Role Of ψ-Operator in the Study of Minimal Open Sets
...Show More Authors

     The operator ψ has been introduced as an associated set-valued set function. Although it has importance for the study of minimal open sets as well as minimal I-open sets. As a result of this study, we introduce minimal I^*-open sets . In this study, several characterizations of minimal I^*-open sets are also investigated. This study also discusses the role of minimal  I^*-open sets in the *-locally finite spaces. In an aspect of topological invariant, the homeomorphic images of minimal I^*-open set has been discussed here.

View Publication Preview PDF
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
The Generalized Homogeneous q-Shift Operator _r Φ_s (D_xy ) for q-Identities and q-Integrals
...Show More Authors

In this paper, we illustrate how to use the generalized homogeneous -shift operator  in generalizing various well-known q-identities, such as Hiene's transformation, the q-Gauss sum, and Jackson's transfor- mation. For the polynomials , we provide another formula for the generating function, the Rogers formula, and the bilinear generating function of the Srivastava-Agarwal type. In addition, we also generalize the extension of both the Askey-Wilson integral and the Andrews-Askey integral.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Thu Dec 05 2019
Journal Name
Advances In Intelligent Systems And Computing
An Enhanced Evolutionary Algorithm for Detecting Complexes in Protein Interaction Networks with Heuristic Biological Operator
...Show More Authors

View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
The Operator S(a,b;θ_x ) for the Polynomials Z_n (x,y,a,b;q)
...Show More Authors

In this work, we give an identity that leads to establishing the operator . Also, we introduce the polynomials . In addition, we provide Operator proof for the generating function with its extension and the Rogers formula for . The generating function with its extension and the Rogers formula for the bivariate Rogers-Szegö polynomials  are deduced. The Rogers formula for  allows to obtain the inverse linearization formula for , which allows to deduce the inverse linearization formula for . A solution to a q-difference equation is introduced and the solution is expressed in terms of the operators . The q-difference method is used to recover an identity of the operator  and the generating function for the polynomials

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Nonclassical Symmetry of Differential Equations
...Show More Authors

In this paper, we discuss the difference between classical and nonclassical symmetries. In addition, we found the non-classical symmetry of the Benjamin Bona Mahony Equation (BBM). Finally, we found a new exact solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical symmetry.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Ain Shams Engineering Journal
A semi-analytical iterative method for solving differential algebraic equations
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations
...Show More Authors

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Sun Jul 04 2021
Journal Name
(al-qadisiyah-journal Of Pure Science(qjps
Reliable Iterative Method for solving Volterra - Fredholm Integro Differential Equations
...Show More Authors

The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.

View Publication