Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.
A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreSkin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift
... Show MoreDiabetic retinopathy (DR) is a diabetes- caused disease that is associated with leakage of fluid from the blood vessels into the retina, leading to its damage. It is one of the most common diseases that can lead to weak vision and even blindness. Exudates is a clear indication of diabetic retinopathy, which is the main cause of blindness in people with diabetes. Therefore, early detection of exudates is a crucial and essential step to prevent blindness and vision loss is in the analysis of digital diabetic retinopathy systems. This paper presents an improved approach for detection of exudates in retina image using supervised-unsupervised Minimum Distance (MD) segmentation method. The suggested system includes three stages; First, a
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreBackground: Ischemic heart disease is a major cause of the diastolic heart failure. Risk of heart failures was increased with microvascular coronary disease, which is characterized by left ventricular stiffness with impaired relaxation and reduced compliance. Aim of this study is to estimate the effect of the severity of myocardium ischemia on the left ventricle ejection fraction and left ventricular volume using SPECT with 99mTc MIBI and to compare the results with the echocardiography. The study included 117 subjects with ischemic heart disease were examined using SPECT and echocardiography techniques. The following
... Show MoreThe rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreBackground : Coronary artery disease is theunderlying cause in approximately two thirds of
patients with systolic heart failure ;
Coronary artery angiogriphy may be useful to
define the presence ,
Anatomical characteristics ,and functional
significance of Coronary artery disease in
selected heart failure patients with or without signs
and aymptoms of Coronary artery disease.
Objectives: to verify the clinical usefulness of
coronary angiography (CA) in congestive heart
failure (CHF) patients with no history of ischemic
heart disease and to identify predictive factors for
performing coronary angiography to patients with
congestive heart failure with no obvious ischemia.
Methods :this is a cross-ses
Women with diabetes in pregnancy (type 1, type 2 and gestational) are at increased risk for adverse pregnancy outcomes which also include infant development of congenital heart disease and even fetal death. Adequate glycemic control before and during pregnancy is crucial to improve outcome
Abstract
In this research will be treated with a healthy phenomenon has a significant impact on different age groups in the community, but a phenomenon tonsillitis where they will be first Tawfiq model slope self moving averages seasonal ARMA Seasonal through systematic Xbox Cengnzla counter with rheumatoid tonsils in the city of Mosul, and for the period 2004-2009 with prediction of these numbers coming twelve months, has found that the specimen is the best representation of the data model is the phenomenon SARMA (1,1) * (2,1) 12 from the other side and explanatory variables using a maximum temperature and minimum temperature, sol