Preferred Language
Articles
/
ijs-4378
Spectroscopic Diagnosis of Arc Carbon and Magnesium Plasma

      This research aims to investigate parameters for magnesium (Mg)  carbon (C), and carbon/magnesium plasma produced by the exploding electrical wire (EEW) technique. In this work, C and Mg nanoparticles were synthesized. The plasma spectra with three different current values (50, 75 and 100A) were recorded using optical emission spectroscopy (OES). The plasma electron temperature (Te), electron density (ne), plasma frequency (fp), Debye length (ℷD), and Debye number (ND) provided by arc discharge plasma were  calculated. Boltzmann plots were  used to calculate the electron temperature (Te); electron density (ne) was calculated by Stark broadening . The results showed that the electron temperature and electron density increased with the increase of current.  For carbon plasma, Te increased from (1.243 to 1.533) eV, and ne increased from (8.762 to 9.857) cm-3. Te for magnesium plasma increased from (0.508 to 0.724)eV  and ne increased from(6.700 to 10.420) cm-3. When the magnesium strip was exploded in carbon suspension, Te  increased from (0.744 to 0.851) eV, and electron density was raised from (5.738 to 9.304)cm-3.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Plasma Dynamics and Pulse Shape Rules in Laser Heating of Opaque Targets in Ai

A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account both plasma dynamics and time variation of incident laser pulse (i.e. pulse shape or profile).Shock tube relations were employed in formulating plasma dynamics over target surface. Gaussian function was chosen in formulating the pulse profile in the present modeling

View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Iraqi Journal Of Science
The Study of Electrical Description for Non-Thermal Plasma Needle System

In this research, a non-thermal plasma system was designed and a non-thermal plasma needle was manufactured for argon gas operating at normal atmospheric pressure. The electrical description of this system studied by using two different values of voltages (4.9,8) kV. Where the results showed the small amount of electrical current consumed by the system of plasma needle up to several microns of amps, and the value of the electrical current increase with the increasing gas flow, as well as the results, showed that happen a breakdown voltage at (8) kV when gas flow (4 l/min) causing a slight decrease in the electrical current value.

View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
The study of thermal description for non-thermal plasma needle system

Cold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
The Effect of Cadmium Selenide Thin Film Thickness on Carbon Monoxide Gas Sensing Properties prepared by Plasma DC-Sputtering Technique

     Cadmium Selenide (CdSe) thin films have been deposited on a glass substrate utilizing the plasma DC-sputtering method at room temperature at different deposition time in order to achieve different films thickness, and studied its sensitivity to the  carbon monoxide CO gas which are show high response as the film thickness increases, the DC-conductivity and photoconductivity are also studied and which are increased too as the film thickness increases, that indicates the good semiconducting behavior at room  temperature and light environments.

View Publication Preview PDF
Publication Date
Wed Mar 29 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Calcium, Magnesium and Phosphorous Levels in Serum of Iraqi Women with Fibromyalgia

         Fibromyalgia (FM) is a common, debilitating, and chronic pain syndrome. The women are more likely to have more tender points on examination than are their male counterparts. Iraqi study showed that FM occur in 1.5% among adolescents of Iraqi population. In compare to normal healthy women, present study was revealed that Iraqi women with FM have significant elevation of calcium (p = 0.003) with significant reduction of magnesium (p = 0.001), whereas the inorganic phosphorous was not differs (p = 0.31). In conclusion, magnesium and calcium would play a crucial role in etiopathogenesis of fibromyalgia.

Key words: calcium, magnesium, phosphorous, Fibromyalgia.

Crossref
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Influence of the Distance between Focusing Lens and Target Surface on the Characteristics of Laser-excited Lead Plasma

      The present work investigated the effect of distance from target surface on the parameters of lead plasma excited by 1064nm Q-switched Nd:YAG laser. The excitation was conducted in air, at atmospheric pressure, with pulse length of 5 ns, and at different pulse laser energies. Electron temperature was calculated by Boltzmann plot method based on the PbI emission spectral lines (369.03 nm, 416.98 nm, 523.48, and 561.94 nm). The PbI lines were recorded at different distances from the target surface at laser pulse energies of 260 and 280 mJ. The emission intensity of plasma increased with increasing the lens-to-target distance. The results also detected an increase in electron temperature with increasing the di

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Iraqi Journal Of Applied Physics
Effects of Magnetic Field on Growth and Electrical Characteristics of Tornado Gliding Arc Discharge

This study investigates the characterization and growth dynamics of a Magnetically Stabilized Gliding Arc Discharge (MSGAD) system, generating non-thermal plasma with argon gas under atmospheric pressure and flow rates of 1-5 L/min. The electrical properties and growth patterns concerning gas flow rates and applied voltages were examined utilizing a magnetic field for stability. Using a digital oscilloscope, a correlation between voltage reduction and increased current was uncovered. An algorithm analyzes digital images to compute arc length, area, and volume. Results reveal how gas flow rate and applied voltage directly impact arc growth. Furthermore, the magnetic field's role in guiding and stabilizing the plasma discharge was explored. T

... Show More
Scopus (1)
Scopus
Preview PDF
Publication Date
Sun Dec 02 2018
Journal Name
Iraqi Journal Of Physics
Optical emission spectroscopy for studying the exploding copper wire plasma parameters in distilled water

This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Influence of Fe2O3 Dust Particles on the Plasma Characteristics of D.C Sputtering System

    This work is an experimental study conducted to study the effects of iron oxide dust particles (Fe2O3) on the characteristics of DC discharge plasma in argon gas under vacuum. Electron temperature ( ) and electron density (ne) were calculated by Boltzmann plots and Stark broadening, respectively. The results show that both the electron density and plasma frequency ( ) increased with the operating pressure. While,  and Debye length ( ) decreased with pressure. The glow discharge is more stable with the Fe2O3-dust particles; all dust plasma parameters have lower values  than those of the dust-free plasma.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Photovoltaic system DC series arc fault: a case study

<p>Photovoltaic (PV) systems are becoming increasingly popular; however, arc faults on the direct current (DC) side are becoming more widespread as a result of the effects of aging as well as the trend toward higher DC voltage levels, posing severe risk to human safety and system stability. The parallel arc faults present higher level of current as compared with the series arc faults, making it more difficult to spot the series arc. In this paper and for the aim of condition monitoring, the features of a DC series arc fault are analyzed by analysing the arc features, performing model’s simulation in PSCAD, and carrying out experimental studies. Various arc models are simulated and investigated; for low current arcs, the heur

... Show More
Scopus (2)
Scopus Crossref
View Publication