Akkas Field is a structural trap with a sandstone reservoir that contains proven gas condensate. The field is a faulted anticline that consists of the Ordovician Khabour Formation. The objective of this research is to use structural reservoir characterization for hydrocarbon recovery. The stratigraphic sequence of the Silurian and older strata was subjected to an uplift that developed a gentle NW-SE trending anticline. The uplifting and folding events developed micro-fractures represented by tension cracks. These microfractures, whether they are outer arc or release fractures, are parallel to the hinge line of the anticline and perpendicular to the bedding planes. The brittle sandstone layers of the reservoir are interbedded with ductile units of shale. The sandstone layers accommodate the formation of micro fractures that play a major role to increase the secondary porosity. The gas and condensate have been stored mainly through the micro fractures. Two types of drilling have been used for experimental gas production, vertical and horizontal. Horizontal drilling was parallel to both hinge line of the anticline and micro fracture surfaces that was conducted and doubled the gas production of the vertical well multiple times. However, if used the third type of drilling, directional, that is perpendicular to the hinge line and parallel to the beddings of both flanks of the anticline gas production will increase more than the horizontal drilling. The directional drilling will become perpendicular to the fracture surfaces and allow the gas and the condensate to flow into the well from all directions. Additionally, it will reduce the effect of both semi – liquid hydrocarbon condensate and vertical sediment barriers.
Flow unit and reservoir rock type identification in carbonates are difficult due to the intricacy of pore networks caused by facies changes and diagenetic processes. On the other hand, these classifications of rock type are necessary for understanding a reservoir and predicting its production performance in the face of any activity. The current study focuses on rock type and flow unit classification for the Mishrif reservoir in Iraq's southeast and the study is based on data from five wells that penetrate it. Integration of several methods was used to determine the flow unit based on well log interpretation and petrophysical properties. The flow units were identified using the Quality Index of Rock and the Indicator of Flow Zone. Th
... Show MoreFour subsurface sections and electrical, porosity logs, and gamma-ray logs of the Khasib Formation (age Late Turonian-Lower Coniacian) were studied to identify reservoir characteristics and to evaluate the reservoir properties of the Khasib reservoir units in the East Baghdad oilfield. The lithology of the formation is limestone throughout the whole sequence in all studied wells EB-83, EB-87, EB-92, and EB94. It is bounded conformably from the top by Tanuma Formation and has a conformable lower contact with Kifl Formation. The lower and upper boundaries of the formation were determined using well log analysis, and the formation was divided into three main rock units (Kh1, Kh2, and Kh3), depending on the porosity logs. The porosi
... Show MoreThe Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricte
... Show MoreThe identification of a bed’s lithology is fundamental to all reservoir characterization because the physical and chemical properties of the rock that holds hydrocarbons and/or water affect the response of every tool used to measure formation properties. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umr Formation in Luhais well -12 southern Iraq. The available well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The petrophysical parameters such as porosity, water saturation, hydrocarbon saturation, bulk water volume, etc. were computed and interpreted using Techlog software. The lithology prediction of Nahr
... Show MoreOne of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir. MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta
... Show MoreThe main goal of this study is to evaluate Mishrif Reservoir in Abu Amood oil field, southern Iraq, using the available well logs. The sets of logs were acquired for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5. The evaluation included the identification of the reservoir units and the calculation of their petrophysical properties using the Techlog software. Total porosity was calculated using the neutron-density method and the values were corrected from the volume of shale in order to calculate the effective porosity. Computer processed interpretation (CPI) was accomplished for the five wells. The results show that Mishrif Formation in Abu Amood field consists of three reservoir units with various percentages of h
... Show MoreThe present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recogniti
... Show More