This paper investigates the simultaneous recovery for two time-dependent coefficients for heat equation under Neumann boundary condition. This problem is considered under extra conditions of nonlocal type. The main issue with this problem is the solution unstable to small contamination of noise in the input data. The Crank-Nicolson finite difference method is utilized to solve the direct problem whilst the inverse problem is viewed as nonlinear optimization problem. The later problem is solved numerically using optimization toolbox from MATLAB. We found that the numerical results are accurate and stable.
This paper presents a numerical solution to the inverse problem consisting of recovering time-dependent thermal conductivity and heat source coefficients in the one-dimensional parabolic heat equation. This mathematical formulation ensures that the inverse problem has a unique solution. However, the problem is still ill-posed since small errors in the input data lead to a drastic amount of errors in the output coefficients. The finite difference method with the Crank-Nicolson scheme is adopted as a direct solver of the problem in a fixed domain. The inverse problem is solved sub
... Show MoreThe aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.