This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.
Optimal control methods are used to get an optimal policy for harvesting renewable resources. In particular, we investigate a discretization fractional-order biological model, as well as its behavior through its fixed points, is analyzed. We also employ the maximal Pontryagin principle to obtain the optimal solutions. Finally, numerical results confirm our theoretical outcomes.
The linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for velocity correction and exact v
... Show MoreNowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real outp
... Show MoreThe aim of this paper is to compare between classical and fuzzy filters for removing different types of noise in gray scale images. The processing used consists of three steps. First, different types of noise are added to the original image to produce a noisy image (with different noise ratios). Second, classical and fuzzy filters are used to filter the noisy image. Finally, comparing between resulting images depending on a quantitative measure called Peak Signal-to-Noise Ratio (PSNR) to determine the best filter in each case.
The image used in this paper is a 512 * 512 pixel and the size of all filters is a square window of size 3*3. Results indicate that fuzzy filters achieve varying successes in noise reduction in image compared to
This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.