This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.
The aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem of the proposed problem is stated and demonstrated.
In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied. The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived. Under suitable conditions, theorems of necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreThis work is concerned with studying the optimal classical continuous control quaternary vector problem. It is consisted of; the quaternary nonlinear hyperbolic boundary value problem and the cost functional. At first, the weak form of the quaternary nonlinear hyperbolic boundary value problem is obtained. Then under suitable hypotheses, the existence theorem of a unique state quaternary vector solution for the weak form where the classical continuous control quaternary vector is considered known is stated and demonstrated by employing the method of Galerkin and the compactness theorem. In addition, the continuity operator between the state quaternary vector solution of the weak form and the corresponding classical continuous control qua
... Show MoreThe paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat
... Show MoreThis work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem a
... Show MoreIn this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
The paper is concerned with the state and proof of the solvability theorem of unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin theorem (AUTH), when the boundary control vector (BCV) is known. Solvability theorem of a boundary optimal control vector (BOCV) with equality and inequality state vector constraints (EINESVC) is proved. We studied the solvability theorem of a unique solution for the adjoint triple boundary value problem (ATHBVP) associated with TNLHBVP. The directional derivation (DRD) of the "Hamiltonian"(DRDH) is deduced. Finally, the necessary theorem (necessary conditions "NCOs") and the sufficient theorem (sufficient co
... Show MoreThe aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.
In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.