This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.
In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
In this paper, we introduce the concept of Jordan –algebra, special Jordan –algebra and triple –homomorphisms. We also introduce Bi - –derivations and Annihilator of Jordan algebra. Finally, we study the triple –homomorphisms and Bi - –derivations on Jordan algebra.
Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.
Copulas are simply equivalent structures to joint distribution functions. Then, we propose modified structures that depend on classical probability space and concepts with respect to copulas. Copulas have been presented in equivalent probability measure forms to the classical forms in order to examine any possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some probabilistic constructions have been shown within independent, and conditional probability concepts. A Bay's probability relation and its pro
... Show MoreBackground: Breast cancer is the most common malignancy affecting the Iraqi population and the leading cause of cancer related mortality among Iraqi women. It has been well documented that prognosis of patients depends largely upon the hormone receptor contents and HER-2 over expression of their neoplasm. Recent studies suggest that Triple Positive (TP) tumors, bearing the three markers, tend to exhibit a relatively favorable clinical behavior in which overtreatment is not recommended. Aim: To document the different frequencies of ER/PR/HER2 breast cancer molecular subtypes focusing on the Triple Positive pattern; correlating those with the corresponding clinico-pathological characteristics among a sample of Iraqi patients diagnosed with th
... Show MoreThis work presents an approach for the applying Triple DES (TRIPLE DES) based on using genetic algorithm by adding intelligent feature for TRIPLE DES with N round for genetic algorithm. Encapsulated cipher file with special program which send an acknowledgment to a sender to know who decipher or broken to crash it , Thus it is considered as the initial step to improve privacy. The outcome for proposed system gives a good indication that it is a promising system compared with other type of cipher system.
In this paper, an exact stiffness matrix and fixed-end load vector for nonprismatic beams having parabolic varying depth are derived. The principle of strain energy is used in the derivation of the stiffness matrix.
The effect of both shear deformation and the coupling between axial force and the bending moment are considered in the derivation of stiffness matrix. The fixed-end load vector for elements under uniformly distributed or concentrated loads is also derived. The correctness of the derived matrices is verified by numerical examples. It is found that the coupling effect between axial force and bending moment is significant for elements having axial end restraint. It was found that the decrease in bending moment was
in the