Internet of Vehicle (IoV) is one of the most basic branches of the Internet of Things (IoT), which provides many advantages for drivers and passengers to ensure safety and traffic efficiency. Most IoV applications are delay-sensitive and require resources for data storage and computation that cannot be afforded by vehicles. Thus, such tasks are always offloaded to more powerful nodes, like cloud or fog. Vehicular Fog Computing (VFC), which extends cloud computing and brings resources closer to the edge of the network, has the potential to reduce both traffic congestion and load on the cloud. Resources management and allocation process is very critical for satisfying both user and provider needs. However, the strategy of task offloading to fog node in constraints of energy and latency is still an open issue. Several research works have tackled the resource scheduling problem in the field of VFC; however, the recent studies have not carefully addressed the transmission path to the destination node, nor has it considered the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives while taking the deadline constraint into considerations by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Four different execution/transmission models are proposed where vehicle resources are utilized for tasks execution and transmission, and the well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the models which involve the vehicles in the transmission process have reduced the latency and the total energy for the VFC system significantly in comparison with other models and the current state of the art methods.
The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis
... Show MoreCyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer
... Show MoreIn this paper, the main work is to minimize a function of three cost criteria for scheduling n jobs on a single machine. We proposed algorithms to solve the single machine scheduling multiobjective problem. In this problem, we consider minimizing the total completion times, total tardiness and maximum tardiness criteria. First a branch and bound (BAB) algorithm is applied for the 1//∑Ci+∑Ti+Tmax problem. Second we compare two multiobjective algorithms one of them based on (BAB) algorithm to find the set of efficient (non dominated) solutions for the 1//(∑Ci ,∑Ti ,Tmax) problem. The computational results show that the algorithm based on (BAB) algorithm is better than the other one for generated the total number of
... Show MoreIn this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f
... Show MoreTask scheduling in an important element in a distributed system. It is vital how the jobs are correctly assigned for each computer’s processor to improve performance. The presented approaches attempt to reduce the expense of optimizing the use of the CPU. These techniques mostly lack planning and in need to be comprehensive. To address this fault, a hybrid optimization scheduling technique is proposed for the hybridization of both First-Come First-Served (FCFS), and Shortest Job First (SJF). In addition, we propose to apply Simulated Annealing (SA) algorithm as an optimization technique to find optimal job’s execution sequence considering both job’s entrance time and job’s execution time to balance them to reduce the job
... Show MoreThis paper investigates the simultaneous recovery for two time-dependent coefficients for heat equation under Neumann boundary condition. This problem is considered under extra conditions of nonlocal type. The main issue with this problem is the solution unstable to small contamination of noise in the input data. The Crank-Nicolson finite difference method is utilized to solve the direct problem whilst the inverse problem is viewed as nonlinear optimization problem. The later problem is solved numerically using optimization toolbox from MATLAB. We found that the numerical results are accurate and stable.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg
... Show MoreA computational investigation has been carried out to describe synthesis optimization procedure of magnetic lenses. The research is concentrated on the determination of the inverse design of the symmetrical double polepiece magnetic lenses whose magnetic field distribution is already defined. Magnetic lenses field model well known in electron optics have been used as the axial magnetic field distribution. This field has been studied when the halfwidth is variable and the maximum magnetic flux density is kept constant. The importance of this research lies in the possibility of using the present synthesis optimization procedure for finding the polepieces design of symmetrical double polepiece magnetic lenses which have the best proje
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show More