Preferred Language
Articles
/
ijs-4004
Solving the Created Equations from Power Function Distribution
...Show More Authors

      In this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find  the  solutions  of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are discussed. The exact solutions of these obtained differential equations are calculated using some methods. In addition, the approximate solutions are determined by the Variation Iteration Method (VIM) and Runge-Kutta of 4th Order (RK4) method. The chosen approximate methods VIM and RK4 are used in our study because they are reliable, famous, and more suitable for solving such generated equations. Finally, some examples are given  to illustrate the behavior of the exact and the approximate solutions of the differential equations with the scale parameters of power function distribution.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to compare between parametric and nonparametric transfer function model
...Show More Authors

In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods  local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Aug 06 2018
Journal Name
Indian Journal Of Applied Research
STATISTICAL METHOD FOR SOLVING TRANSPORTATION PROBLEMS OF USING THE PROGRAMMING LANGUAGE MATLAB
...Show More Authors

Original Research Paper Mathematics 1-Introduction : In the light of the progress and rapid development of the applications of research in applications fields, the need to rely on scientific tools and cleaner for data processing has become a prominent role in the resolution of decisions in industrial and service institutions according to the real need of these methods to make them scientific methods to solve the problem Making decisions for the purpose of making the departments succeed in performing their planning and executive tasks. Therefore, we found it necessary to know the transport model in general and to use statistical methods to reach the optimal solution with the lowest possible costs in particular. And you know The Transportatio

... Show More
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Three Weighted Residuals Methods for Solving the Nonlinear Thin Film Flow Problem
...Show More Authors
Abstract<p>In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4<sup>th</sup>-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.</p>
View Publication
Crossref (1)
Crossref
Publication Date
Fri Mar 18 2016
Journal Name
International Journal Of Basic And Applied Sciences
Analytic and numerical solution for duffing equations
...Show More Authors

<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>

View Publication
Crossref (13)
Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
First Order Nonlinear Neutral Delay Differential Equations
...Show More Authors

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.

View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
The effect of solar cells distribution on the Performance of solar panel
...Show More Authors

Three different distribution modules of silicon solar cells in a panel are used in this study . Each module consists of five identical circular silicon solar cells of radius (5cm) and then the total panel areas are identical. The five solar cells are arranged in the panel in different shapes: circular, triangular and rectangular .The efficiency for these three panel distribution are measured indoor and outdoor. The results show that the efficiency is a function of the cells distribution.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Plasma Power Density Produced by D-T Fusion Reaction
...Show More Authors

         Calculation of the power density of the nuclear fusion reactions plays an important role in the   construction of any power plants. It is clear that the power released by fusion reaction strongly depended on the fusion cross section and fusion reactivity. Our calculation concentrates on the most useful and famous fuels (Deuterium-tritium) since it represents the principle fuels in any large scale system like the so called tokomak.

View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Some Subclasses of Univalent and Bi-Univalent Functions Related to K-Fibonacci Numbers and Modified Sigmoid Function
...Show More Authors

            This paper is interested in certain  subclasses of univalent and bi-univalent functions concerning  to shell- like curves connected with k-Fibonacci numbers involving modified Sigmoid activation function θ(t)=2/(1+e^(-t) ) ,t ≥0 in unit disk |z|<1 . For estimating of the initial coefficients |c_2 | , |c_3 |, Fekete-Szego ̈ inequality and the  second Hankel determinant have been investigated for the functions in our classes. 

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 04 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Comparison the solutions for some kinds of differential equations using iterative methods
...Show More Authors

This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.

Scopus (8)
Scopus