Preferred Language
Articles
/
ijs-3921
A Vehicle ID identification Architecture: A Parallel-Joining WSN Algorithm
...Show More Authors

Several remote sensor network (WSN) tasks require sensor information join. This in-processing Join is configured in parallel sensor hub to save battery power and limit the communication cost. Hence, a parallel join system is proposed for sensor networks. The proposed parallel join algorithm organizes in section-situated databases. A novel join method has been proposed for remote WSNs to limit the aggregate communication cost and enhance execution. This approach depends on two procedures; section-situated databases and parallel join algorithm utilized to store sensor information and speed up processing respectively. A segment arranged databases store information table in segmented shrewd. The Parallel-Joining WSN algorithm is effectively feasible for two clear reasons. Firstly, the decisive join conveyed fragments. Secondly, parallel-joining is in the fly processed sensor data. Creatively, a parallel dispersed algorithm has been developed to gain time compared to the single disseminated algorithm.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Structural Time Series for Forecasting Oil Prices
...Show More Authors

There are many methods of forecasting, and these methods take data only, analyze it, make a prediction by analyzing, neglect the prior information side and do not considering the fluctuations that occur overtime. The best way to forecast oil prices that takes the fluctuations that occur overtime and is updated by entering prior information is the Bayesian structural time series (BSTS) method. Oil prices fluctuations have an important role in economic so predictions of future oil prices that are crucial for many countries whose economies depend mainly on oil, such as Iraq. Oil prices directly affect the health of the economy. Thus, it is necessary to forecast future oil price with models adapted for emerging events. In this article, we st

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Analysis of Recorded Inflow Data of Ataturk Reservoir
...Show More Authors

Since the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of Biological Models with Optimal Harvesting
...Show More Authors

      This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested  function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.

View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improving Detection Rate of the Network Intrusion Detection System Based on Wrapper Feature Selection Approach
...Show More Authors

Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Text Hiding in Color Images Using the Secret Key Transformation Function in GF (2n)
...Show More Authors

Steganography is one of the most popular techniques for data hiding in the different media such as images, audio or video files. This paper introduced the improved technique to hide the secret message using the LSB algorithm inside the RGB true color image by encrypting it using the secret key transformation function. The key is selecting randomly in the GF (2n) with condition it has an inverse value to retrieve the encrypted message. Only two bits are used for the low byte in each pixel (the blue byte) to hide the secret message, since the blue color has a weak effect on human eyes. The message hidden by the suggested algorithm is less vulnerable to be stolen than other similar applications.

View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Feature Extraction in Six Blocks to Detect and Recognize English Numbers
...Show More Authors

    The Fuzzy Logic method was implemented to detect and recognize English numbers in this paper. The extracted features within this method make the detection easy and accurate. These features depend on the crossing point of two vertical lines with one horizontal line to be used from the Fuzzy logic method, as shown by the Matlab code in this study. The font types are Times New Roman, Arial, Calabria, Arabic, and Andalus with different font sizes of 10, 16, 22, 28, 36, 42, 50 and 72. These numbers are isolated automatically with the designed algorithm, for which the code is also presented. The number’s image is tested with the Fuzzy algorithm depending on six-block properties only. Groups of regions (High, Medium, and Lo

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Hiding Techniques for Dynamic Encryption Text based on Corner Point
...Show More Authors

Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.

View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
An Evolutionary-Based Mutation With Functional Annotation to Identify Protein Complexes Within PPI Networks
...Show More Authors

     The research deals with an evolutionary-based mutation with functional annotation to identify protein complexes within PPI networks. An important field of research in computational biology is the difficult and fundamental challenge of revealing complexes in protein interaction networks. The complex detection models that have been developed to tackle challenges are mostly dependent on topological properties and rarely use the biological  properties of PPI networks. This research aims to push the evolutionary algorithm to its maximum by employing gene ontology (GO) to communicate across proteins based on biological information similarity for direct genes. The outcomes show that the suggested method can be utilized to improve the

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (2)
Scopus Crossref