This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.
Research deals the crises of the global recession of the facets of different and calls for the need to think out of the ordinary theory and find the arguments of the theory to accommodate the evolution of life, globalization and technological change and the standard of living of individuals and the size of the disparity in income distribution is not on the national level, but also at the global level as well, without paying attention to the potential resistance for thought the usual classical, Where the greater the returns of factors of production, the consumption will increase, and that the marginal propensity to consume may rise and the rise at rates greater with slices of low-income (the mouths of the poor) wi
... Show More