Preferred Language
Articles
/
ijs-3894
MRI Probabilistic Neural Network Screening System: a benign and malignant recognition case study

This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 19 2015
Journal Name
Al-academy
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Al-kindy College Medical Journal
Serum Pseudocholinesterase as a Biomarker in the Differentiation between Gastric Cancer and Benign Gastric Diseases

Background: Worldwide gastric cancer is the fifth most common cancer with poor prognosis. In early stages, it is hard to distinguish gastric cancer from benign gastric diseases, resulting in delayed diagnosis. There is a need to develop a biomarker for differentiating between gastric cancer and benign gastric diseases. Serum cholinesterase is synthesized in liver and released into plasma, and it has an important role in oncogenesis.

Objectives: To determine the correlation between serum cholinesterase activity and gastric cancer, in comparison to benign gastric diseases.

Subjects and Methods: A case control study carried out at Medical City Direct

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Development of Bridges Maintenance Management System based on Geographic Information System Techniques (Case study: Al-Muthanna \ Iraq)

A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization

... Show More
Crossref (5)
Crossref
View Publication
Publication Date
Sat Oct 01 2016
Journal Name
Gjra - Global Journal For Research Analysis
Inclination of the Lumbosacral angle in normal individuals: An MRI study

Inclination Of The Lumbosacral Angle In Normal Individuals: An Mri Study,GJRA - Global Journal For Research Analysis(GJRA) GJRA is a double reviewed monthly print journal that accepts research works. 36572+ Manuscript submission, 9855+ Research Paper Published, 100+ Articles from over 100 Countries

View Publication Preview PDF
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Laplace Distribution And Probabilistic (bi) In Linear Programming Model

The theory of probabilistic programming  may be conceived in several different ways. As a method of programming it analyses the implications of probabilistic variations in the parameter space of linear or nonlinear programming model. The generating mechanism of such probabilistic variations in the economic models may be due to incomplete information about changes in demand, pro­duction and technology, specification errors about the econometric relations presumed for different economic agents, uncertainty of various sorts and the consequences of imperfect aggregation or disaggregating of economic variables. In this Research we discuss the probabilistic programming problem when the coefficient bi is random variable

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Feb 25 2017
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
A Novel DNA Sequence Approach for Network Intrusion Detection System Based on Cryptography Encoding Method

A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh

... Show More
Scopus (9)
Crossref (5)
Scopus Crossref
View Publication
Publication Date
Sun Sep 03 2023
Journal Name
Iraqi Journal Of Computers, Communications, Control & Systems Engineering (ijccce)
Efficient Iris Image Recognition System Based on Machine Learning Approach

HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023

View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
Crossref
View Publication
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication