Preferred Language
Articles
/
ijs-369
Generalized Spline Method for Integro-Differential Equations of Fractional Order
...Show More Authors

In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Generalized Schultz and Modified Schultz Polynomials for Some Special Graphs
...Show More Authors

With simple and undirected connected graph Φ, the Schultz and modified Schultz polynomials are defined as  and , respectively, where the summation is taken over all unordered pairs of distinct vertices in V(Φ), where V(Φ) is the vertex set of Φ, degu  is the degree of vertex u and d(v,u) is the ordinary distance between v and u, u≠v. In this study, the Shultz distance, modified Schultz distance, the polynomial, index, and average for both have been generalized, and this generalization has been applied  to some special graphs.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Design of Optimal Control for the In-host Tuberculosis Fractional Model
...Show More Authors

     In this article, we investigate a mathematical fractional model of tuberculosis that takes into account vaccination as a possible way to treat the disease. We use an in-host tuberculosis fractional model that shows how Macrophages and Mycobacterium tuberculosis interact to knowledge of how vaccination treatments affect macrophages that have not been infected. The existence of optimal control is proven. The Hamiltonian function and the maximum principle of the Pontryagin are used to describe the optimal control. In addition, we use the theory of optimal control to develop an algorithm that leads to choosing the best vaccination plan. The best numerical solutions have been discovered using the forward and backward fractional Euler

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Explicit Finite Difference Approximation for the TwoDimensional Fractional Dispersion Equation
...Show More Authors

  In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation.  The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation

View Publication Preview PDF
Publication Date
Sat Sep 10 2022
Journal Name
Pakistan Journal Of Statistics And Operation Research
Continuous wavelet estimation for multivariate fractional Brownian motion
...Show More Authors

 In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Sep 10 2022
Journal Name
Pakistan Journal Of Statistics And Operation Research
Continuous wavelet estimation for multivariate fractional Brownian motion
...Show More Authors

 In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
On Nano Generalized Semi Generalized Closed Sets
...Show More Authors

In this paper we introduced a new class of - called - and study their basic properties in nano topological spaces. We also introduce -closure and -interior and study some of their fundamental properties.

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Australian Journal Of Mathematical Analysis And Applications
Formulation of approximate mathematical model for incoming water to some dams on Tigris and Euphrates Rivers using spline function
...Show More Authors

n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.

View Publication
Scopus
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Empirical Equations for Analysis of Two-Way Reinforced Concrete Slabs
...Show More Authors

There are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.

In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.

The comparison proof that this simple proposed method gives good results and it can be used in analy

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximation Solution of Fuzzy Singular Volterra Integral Equation by Non-Polynomial Spline
...Show More Authors

A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 18 2016
Journal Name
International Journal Of Basic And Applied Sciences
Analytic and numerical solution for duffing equations
...Show More Authors

<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>

View Publication
Crossref (13)
Crossref