This work is an experimental study about the effects of gas pressure and magnetic field on plasma characteristics produced in an internal hollow electrodes discharge (HED) system. The results show that the breakdown voltage values increase with increasing the working pressure (especially with the presence of a magnetic field). The breakdown voltage depends on the p.d. product, where p is the gas pressure and d is the distance between the electrodes. While the values of current discharge decrease with the increase of the working pressure. The temperature of electron and the number density of electron are calculated from the Boltzmann method and the broadening of Stark, respectively. The results showed that the electron number density ( ) and plasma frequency ( ) increase with increasing the gas pressure, especially with the presence of a magnetic field, i.e. the plasma is more stable with the presence of magnetic field. While the electron temperature ( ) and Debye length ( ) decrease with increasing the gas pressure.
Non-thermal plasmas have become popular as plasma technology has advanced in various fields, including waste management, aerospace technology, and medicinal applications. They can be used to replace combustion fuels in stationary hall motors and need little effort to keep running for longer periods of time. To improve overall system performance, non-reactive gases such as )Xe, Ar, and Kr) are utilized in pure or mixed form to generate plasma. Since DC glow discharge is a fundamental topic of importance, these gases have been researched. The paper concentrates on 2-D modeling and simulation. DC glow-discharge tubes are utilized with argon gas to create plasma and learn about its properties. The magnitude of the electron density, increases wi
... Show MoreThis paper investigated in the numerical simulation model to calculate the Earth magnetic field components at north provinces of Najaf city (Longitude 44.316 o -44.3592o E and Latitude 32.0508o - 32.0256o N). The components of the Earth magnetic field (total intensity (F), horizontal intensity (H), declination (D), inclination (I), the north component(X), the east component(Y), and Down component(Z)) were found by using spherical harmonic world magnetic model (WMM2010). A great deal of anomaly has been discovered in all components of the Earth magnetic field at the selected region (Long. 44.345o-44.335o E, Lat.32.042o-32.032o N) using Kriging method.
... Show MoreThe work done in this paper to study properties for nitrogen plasma generated by method electrical discharge when the aluminum was a target. Experimental study on the effect electrodes material, applied voltages on spectroscopic parameter for DC discharge plasma in Nitrogen gas using planner electrodes were done.
The electron temperature, increase with increasing applied voltage from (700 to 1100) V. While the plasma density, calculate by Stark broadening effect, which increase with it.
The peaks intensities for N2 transition (λ= 336.6 nm and 391.4 nm) increase with increasing applied voltage. The vibrational energy (TVib) for N2 molecular increase from 0.165 to 0.185 eV
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreThe present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50, and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to g
... Show MoreIn this paper, the peristaltic flow under the impact of heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow. Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff
... Show MoreIn this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.