The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, where the most common porosity types were the primary (interparticle) and secondary (moldic and vugs) . The main diagenetic process that occurred in YA0, YA2, and YB1 is cementation, which led to the filling of pore spaces by cement and subsequently decreased the reservoir quality (porosity and permeability). Based on the results of the final digital computer interpretation and processing (CPI) performed by using the Techlog software, the units YA1 and YB2 have the best reservoir properties. The unit YB2 is characterized by a good effective porosity average, low water saturation, good permeability, and large thickness that distinguish it from other reservoir units.
Well log rock physics and seismic facies analysis was carried out with a view to enhancing reservoir sand characterization of Mafe Field of Niger Delta. Lithofacies were identified using suites of well logs and correlated across the block. Rock properties were estimated from wireline logs using empirical methods. Vp-porosity crossplot was used to characterize the delineated sandstone reservoirs by comparing observed clusters and trends with various rock physics models. Seismic attribute analysis was employed to detect lateral changes in lithology across the field. Reservoir A is a relatively clean sand, with low average volume of shale of 0.4, average thickness of 55m, good average porosity of 0.
... Show MoreThe major objective of this paper is to recognize the flow units of Yamama Formation in the west Qurna oil field, south of Iraq. To attain this objective, four wells namely, WQ-23, WQ-148, WQ-60, and WQ-203 are selected and analyzed. The two techniques hat proposed by some scientists to identify flow units are tested and verified. Results are also enhanced using well logs interpretation and the flow areas are proposed through the studying of the behavior of different well logs. Results of applying the two proposed techniques identify six flow reservoir units for the wells WQ-23, WQ-148, WQ-60, and WQ-203, respectively. This study also shows that the flow reservoir properties in the Yamama Formation improved towards the northeast of the W
... Show MoreThe reservoir characterization of Lower Qamchuqa (Shu'aiba) Formation (Aptian) is studied at the well BH-86 of Bai- Hassan Oilfield in Kirkuk area, Northern Iraq. The lithological study (of 91 thin sections) revealed that the formation consists of shaly limestone, a thin bed of marl within the limestone, and dolomitic limestone. Four petrographic microfacies were noticed Lime mudstone microfacies, Dolomudstone microfacies, Lime wackestone microfacies, subdivided into benthonic foraminifera lime wackestone submicrofacies and bioclasts lime wackestone submicrofacies, and the last microfacies is the Lime packstone microfacies, which is subdivided into pelloidal lime packstone submicrofacies and Orbitolina lime packstone microfaci
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricte
... Show MoreWell log analysis of selected sections in southern Iraq revealed that primary porosity is the most effective parameters. Secondary porosity seems to be related mainly to dissolution and dolomatization. The Hartha Formation has good water saturation and low production except in the eastern and central part of the study area. Two reservoir units were recognized in Mj-2 whereas only one in Ga-1.
The values of velocity deviation in most wells show high positive deviation, this may indicate relatively high velocity in regard to porosity where pores are commonly not connected such as in interaparticle or moldic porosity. A positive deviation also may indicate low permeability. Negative deviation zone (Only in Ak-1) may represent caving or i
The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recogniti
... Show MoreThe Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreThe EMERGE application from Hampsson-Russell suite programs was used in the present study. It is an interesting domain for seismic attributes that predict some of reservoir three dimensional or two dimensional properties, as well as their combination. The objective of this study is to differentiate reservoir/non reservoir units with well data in the Yamama Formation by using seismic tools. P-impedance volume (density x velocity of P-wave) was used in this research to perform a three dimensional seismic model on the oilfield of Nasiriya by using post-stack data of 5 wells. The data (training and application) were utilized in the EMERGE analysis for estimating the reservoir properties of P-wave ve
... Show MorePetrophysical properties of Mishrif Formation at the Tuba field determined from interpretation of open log data of(Tu-2,3,4,5,6,12,24,and 25) wells. These properties include total (effected) and secondary porosity, as well as moveable and residual oil saturation into invaded and uninvaded zones. According to Petrophysical properties it is possible to divided Mishrif Formation into three reservoir units (RU1,2,and 3) separated by four cap rocks (Bar1,2,3,and 4) . Three-dimension reservoir model is established by used (Petrel, 2009) Software for each reservoir units. Result shows that the second and third reservoir units represent important reservoir units of Mishrif Formation. Thickness and reservoir properties enhanced toward middle and
... Show More