In this research, the Boiti–Leon–Pempinelli (BLP) system was used to understand the physical meaning of exact and solitary traveling wave solutions. To establish modern exact results, considered. In addition, the results obtained were compared with those obtained by using other existing methods, such as the standard hyperbolic tanh function method, and the stability analysis for the results was discussed.
Pushover analysis is an efficient method for the seismic evaluation of buildings under severe earthquakes. This paper aims to develop and verify the pushover analysis methodology for reinforced concrete frames. This technique depends on a nonlinear representation of the structure by using SAP2000 software. The properties of plastic hinges will be defined by generating the moment-curvature analysis for all the frame sections (beams and columns). The verification of the technique above was compared with the previous study for two-dimensional frames (4-and 7-story frames). The former study leaned on automatic identification of positive and negative moments, where the concrete sections and steel reinforcement quantities the
... Show MoreIn this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.
In this research, an unknown space-dependent force function in the wave equation is studied. This is a natural continuation of [1] and chapter 2 of [2] and [3], where the finite difference method (FDM)/boundary element method (BEM), with the separation of variables method, were considered. Additional data are given by the one end displacement measurement. Moreover, it is a continuation of [3], with exchanging the boundary condition, where are extra data, by the initial condition. This is an ill-posed inverse force problem for linear hyperbolic equation. Therefore, in order to stabilize the solution, a zeroth-order Tikhonov regularization method is provided. To assess the accuracy, the minimum error between
... Show MoreThe interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values
... Show MoreThe reactions of ozone with 2,3-Dimethyl-2-Butene (CH3)2C=C(CH3)2 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides) and give a good information for the effe
... Show MoreIn this paper a theoretical attempt is made to determine whether changes in the aorta diameter at different location along the aorta can be detected by brachial artery measurement. The aorta is divided into six main parts, each part with 4 lumps of 0.018m length. It is assumed that a desired section of the aorta has a radius change of 100,200, 500%. The results show that there is a significant change for part 2 (lumps 5-8) from the other parts. This indicates that the nearest position to the artery gives the significant change in the artery wave pressure while other parts of the aorta have a small effect.
Buckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.
This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.