The rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy used to extend the life of the WSN and take successful routing decisions. For these reasons, designing an energy-efficient system that utilizes intelligent approaches is considered as the most powerful way to prolong the lifetime of the WSN. The proposed system is divided into four phases (sensor deployment phase, clustering phase, intra-cluster phase, and inter-cluster phase). Each of these phases uses a different intelligent algorithm with some enhancements. The performance of the proposed system was analyzed and evaluations were elaborated with well-known existing routing protocols. To assess the proficiency of the proposed system and evaluate the endurance of the network, efficiency parameters such as network lifetime, energy consumption, and packet delivery to the Sink (Base station) were exploited. The experimental outcomes justify that the proposed system surpasses the existing mechanisms by 50%.
This paper introduced a hybrid technique for lossless image compression of natural and medical images; it is based on integrating the bit plane slicing and Wavelet transform along with a mixed polynomial of linear and non linear base. The experiments showed high compression performance with fully grunted reconstruction.
The alluvial fan of Mandali located between latitude 30˚45’00” N longitude 45˚30’00” E in east of Diyala Governorate, Iraq. Thirty-five wells were identified in the study area with average depth of 84 m and estimated area of 21550 ha. A three-dimensional conceptual model was prepared by using GMS program. From wells cross sections, four geological layers have been identified. The hydraulic conductivity of these layers was calculated for steady state condition, where the water levels for nine wells distributed over the study area were observed at same time. Afterward, PEST facility in the GMS was used to estimate the aquifer hydraulic characteristics. Other characteristics such as storage coefficient and specific yield have
... Show MoreAlginate is one of the natural biopolymers that is widely used for drug formulations, combination of alginate with other polymers, such as gum acacia, pectin, and carrageenan can increase mechanical strength, therefore, can reduce leakage of the encapsulated active pharmaceutical ingredient from the polymer matrix. Interaction of alginate and these polymers can occur via intermolecular hydrogen bonds causing synergism, which is determined from the viscosity of polymer mixture.
Alginate was combined with gum acacia/pectin/carrageenan in different blending ratios (100:0, 75:25, 50:50, 25:75, and 0:100) with and without addition of CaCl2. The synergism effect is obtained from the design of experimental (DoE), and calculati
... Show MoreDue to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modulari
... Show MoreCopper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides