The rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy used to extend the life of the WSN and take successful routing decisions. For these reasons, designing an energy-efficient system that utilizes intelligent approaches is considered as the most powerful way to prolong the lifetime of the WSN. The proposed system is divided into four phases (sensor deployment phase, clustering phase, intra-cluster phase, and inter-cluster phase). Each of these phases uses a different intelligent algorithm with some enhancements. The performance of the proposed system was analyzed and evaluations were elaborated with well-known existing routing protocols. To assess the proficiency of the proposed system and evaluate the endurance of the network, efficiency parameters such as network lifetime, energy consumption, and packet delivery to the Sink (Base station) were exploited. The experimental outcomes justify that the proposed system surpasses the existing mechanisms by 50%.
The need for image compression is always renewed because of its importance in reducing the volume of data; which in turn will be stored in less space and transferred more quickly though the communication channels.
In this paper a low cost color image lossy color image compression is introduced. The RGB image data is transformed to YUV color space, then the chromatic bands U & V are down-sampled using dissemination step. The bi-orthogonal wavelet transform is used to decompose each color sub band, separately. Then, the Discrete Cosine Transform (DCT) is used to encode the Low-Low (LL) sub band. The other wavelet sub bands are coded using scalar Quantization. Also, the quad tree coding process was applied on the outcomes of DCT and
In this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreIn this work, the methods (Moments, Modified Moments, L-Moments, Percentile, Rank Set sampling and Maximum Likelihood) were used to estimate the reliability function and the two parameters of the Transmuted Pareto (TP) distribution. We use simulation to generate the required data from three cases this indicates sample size , and it replicates for the real value for parameters, for reliability times values we take .
Results were compared by using mean square error (MSE), the result appears as follows :
The best methods are Modified Moments, Maximum likelihood and L-Moments in first case, second case and third case respectively.
Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreIn this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform
... Show MorePattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreSuppose that
This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
The research aims to characterize the strategic plan of the Educational Professional Development Center, to reveal the most important training needs for teachers from this center, to reveal the extent to which this center meets those needs, and to identify the differences between teacher responses about the degree of importance, availability of those needs according to variables of sex, specialization, and years of experience. This descriptive study adopted a questionnaire applied to (256) teachers in the K.S.A. The results of the study showed that all training needs ranged in the degree of importance from large to very large and that the most important were the skills associated with communicating with members of the learning community.
... Show More