Capacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. While the resistivity While the resistivity decrease nonlinearity in the variation of humidity level from 10% to 100%.. The results show that the recovery and response times were higher for the Al/P3HT/Cu/Al sensor compared with those of the other nanoparticles.
In this paper, the air pollutants concentrations measurements such as Total
Suspended Particles(TSP), Carbon Monoxides(CO),Carbon Dioxide (CO2) and
meteorological parameters including temperature (T), relative humidity (RH) and
wind speed & direction were conducted in Baghdad city by several stations
measuring numbered (22) stations located in different regions, and were classified
into (industrial, commercial and residential) stations. The results show that the
concentrations of pollutants (TSP, CO, and CO2) have exceeded the air quality
standards set by World Health Organization (WHO) and Iraqi limitation in the
stations of the Baghdad city. The program (ArcGIS) used to prepare maps of air
pollution in Ba
This paper describes the use of microcomputer as a laboratory instrument system. The system is focused on three weather variables measurement, are temperature, wind speed, and wind direction. This instrument is a type of data acquisition system; in this paper we deal with the design and implementation of data acquisition system based on personal computer (Pentium) using Industry Standard Architecture (ISA)bus. The design of this system involves mainly a hardware implementation, and the software programs that are used for testing, measuring and control. The system can be used to display the required information that can be transferred and processed from the external field to the system. A visual basic language with Microsoft foundation cl
... Show MoreBone metastases are the main reason for death in males suffering from advanced prostate cancer. This study aimed to create zoledronic acid and graphene oxide conjugation for anticancer therapy. The process of conjugation was confirmed by several characterization methods including UV-VIS spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and atomic force microscope (AFM). the cytotoxicity of 400, 600, and 800 μg/ml to each GO, ZOL, and ZOL-GO was evaluated on a human hepatic cell line (WRL 68) and human prostate cancer cell line (PC3) using an MTT assay. The antitumor mechanisms of ZOL-GO were examined by cell cycle analysis. The results demonstrated That ZOL-GO caused a reduction in the cell viability of WRL 68
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MorePorosity and permeability are the most difficult properties to determine in subsurface reservoir characterization. The difficulty of estimating them arising from the fact that porosity and permeability may vary significantly over the reservoir volume, and can only be sampled at well location. Secondly, the porosity values are commonly evaluated from the well log data, which are usually available from most wells in the reservoir, but permeability values, which are generally determined from core analysis, are not usually available. The aim of this study is: First, to develop correlations between the core and the well log data which can be used to estimate permeability in uncored wells, these correlations enable to estimate reservoir permeabil
... Show More3 BaTiO was prepared by mixing the components of 3 BaCO and 2 TiO by ratio [1:1] ، This paper is devoted to study the effect of radition on the electrical properties of 3 BaTiO . Some of prepared samples were exposed to fast neutrons   SMeV and   MeV14 . In addition ، Some samples were exposed to gamma – ray with dosage   Rad81.5 10  . The results showed that the exposition of some samples to fast neutrons   SMeV and   MeV14 lead to increase the electrical resistivity with the study of the effect of the addition of impurity on electrical resistivity . The addition of two compounds   2 3Yb O and   2 3Sm
... Show MoreThis study describes how fuzzy logic control FLC can be applied to sonars of mobile robot. The fuzzy logic approach has effects on the navigation of mobile robots in a partially known environment that are used in different industrial and society applications. The fuzzy logic provides a mechanism for combining sensor data from all sonar sensors which present different information. The FLC approach is achieved by means of Fuzzy Decision Making method type of fuzzy logic controller. The proposed controller is responsible for the obstacle avoidance of the mobile robot while traveling through a map from a home point to a goal point. The FLC is built as a subprogram based on the intelligent architecture (IA). The software program uses th
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245V) versus Ag/AgCl in 0.1M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47s-1. The electrode was used as a hydrogen peroxide biosensor with a line
... Show MoreThe effects of land use/cover change are recognized as one of the challenges facing humans in the twenty-first century. In contrast to less developed regions, its characteristics are characterized by a variety of climatic conditions. The changes result in “Urban Heat Island”, in which the temperature in cities is higher than the temperature in the rest of the country. By monitoring the city of Baghdad for a short period, Baghdad's urbanization progressed quickly, which negatively affected the region’s climate through the decreasing of agricultural lands surrounding the area. Understanding the extent of effects on the environment is critical for long-term development. Climate change and environmental cleanup include making the right
... Show More