The swarm intelligence and evolutionary methods are commonly utilized by researchers in solving the difficult combinatorial and Non-Deterministic Polynomial (NP) problems. The N-Queen problem can be defined as a combinatorial problem that became intractable for the large ‘n’ values and, thereby, it is placed in the NP class of problems. In the present study, a solution is suggested for the N-Queen problem, on the basis of the Meerkat Clan Algorithm (MCA). The problem of n-Queen can be mainly defined as one of the generalized 8-Queen problem forms, for which the aim is placing 8 queens in a way that none of the queens has the ability of killing the others with the use of the standard moves of the chess queen. The Meerkat Clan environment is a directed graph, called the search space, produced for the efficient search of valid n-queens’ placement, in a way that they do not cause harm to one another. This paper also presents the development of an intelligent heuristic function which is helpful to find the solution with high speed and effectiveness. This study includes a detailed discussion of the problem background, problem complexity, Meerkat Clan Algorithm, and comparisons of the problem solution with the Practical Swarm Optimization (PSO) and Genetic Algorithm (GA. It is an entirely review-based work which implemented the suggested designs and architectures of the methods and a fair amount of experimental results.
In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.
The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
EDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.
This paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution,
... Show MoreThe continuous increases in the size of current telecommunication infrastructures have led to the many challenges that existing algorithms face in underlying optimization. The unrealistic assumptions and low efficiency of the traditional algorithms make them unable to solve large real-life problems at reasonable times.
The use of approximate optimization techniques, such as adaptive metaheuristic algorithms, has become more prevalent in a diverse research area. In this paper, we proposed the use of a self-adaptive differential evolution (jDE) algorithm to solve the radio network planning (RNP) problem in the context of the upcoming generation 5G. The experimental results prove the jDE with best vecto
In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show More The calculated neutron yields from (α, n) reactions are very important in analyzing radiation shielding of spent fuel storage, transport and safe handling. The cross sections of 63Cu (α, n) 66Ga and 65Cu (α, n) 68Ga reactions are calculated for different α-energies using different sets of programs using Matlab language. The values deduced energy is from threshold to Eα= 30 MeV and to Eα= 40 MeV for 63Cu (α, n) 66Ga and 65Cu (α, n) 68Ga respectively. The weight average cross section was then used to calculate the neutron yields y0 (n/106α) for each reaction .The empirical formula was then suggested to calculate total neutron yield to each isotope.
This research includes the synthesis of some new N-Aroyl-N \ -Aryl thiourea derivatives namely: N-benzoyl-N \ -(p-aminophenyl) thiourea (STU1), N-benzoyl-N \ -(thiazole) thiourea (STU2), N-acetyl-N ` -(dibenzyl) thiourea (STU3). The series substituted thiourea derivatives were prepared from reaction of acids with thionyl chloride then treating the resulted with potassium thiocyanate to affored the corresponding N-Aroyl isothiocyanates which direct reaction with primary and secondary aryl amines, The purity of the synthesized compounds were checked by measuring the melting point and Thin Layer Chromatography (TLC) and their structure, were identified by spectral methods [FTIR,1H-NMR and 13C-NMR].These compounds were investigated as a
... Show More