In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let and be two -modules such that is singular. Then is -y-closed Rickart module if and only if Also, we study the direct sum of y-closed Rickart modules.
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.
This paper deals with finding an approximate solution to the index-2 time-varying linear differential algebraic control system based on the theory of variational formulation. The solution of index-2 time-varying differential algebraic equations (DAEs) is the critical point of the equivalent variational formulation. In addition, the variational problem is transformed from the indirect into direct method by using a generalized Ritz bases approach. The approximate solution is found by solving an explicit linear algebraic equation, which makes the proposed technique reliable and efficient for many physical problems. From the numerical results, it can be implied that very good efficiency, accuracy, and simplicity of the pre
... Show MoreThe increasing use of polymeric materials in the daily life, leads to challenges in the processing industry to deliver high performance materials with affordable terms. However, new processing techniques lead to high costs. In order to reduce processing costs it is necessary to understand the non-Newtonian behavior of the polymers in their molten state to be able to simulate the processes before the construction of the plants starts. Here the shear thinning behavior of the viscosity of polymeric melts is essential. Thus, this paper deals with the experimental investigation of the thermo-rheological behavior of the viscosity of one of the most used polymers (Polypropylene) over a wide range of temperatures and shear rates. Furthermo
... Show MoreLinear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust
... Show MoreLet be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).
Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.
In 2020 one of the researchers in this paper, in his first research, tried to find out the Modified Weighted Pareto Distribution of Type I by using the Azzalini method for weighted distributions, which contain three parameters, two of them for scale while the third for shape.This research compared the distribution with two other distributions from the same family; the Standard Pareto Distribution of Type I and the Generalized Pareto Distribution by using the Maximum likelihood estimator which was derived by the researchers for Modified Weighted Pareto Distribution of Type I, then the Mont Carlo method was used–that is one of the simulation manners for generating random samples data in different sizes ( n= 10,30,50), and in di
... Show MoreIn this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M; In other words, M is a Max– module iff (0) is a *- submodule, where a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly. In this paper, some properties and characterizations of max– modules and *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.
... Show MoreIn this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.