Governmental establishments are maintaining historical data for job applicants for future analysis of predication, improvement of benefits, profits, and development of organizations and institutions. In e-government, a decision can be made about job seekers after mining in their information that will lead to a beneficial insight. This paper proposes the development and implementation of an applicant's appropriate job prediction system to suit his or her skills using web content classification algorithms (Logit Boost, j48, PART, Hoeffding Tree, Naive Bayes). Furthermore, the results of the classification algorithms are compared based on data sets called "job classification data" sets. Experimental results indicated that the algorithm j48 had the highest precision (94.80%) compared to other algorithms for the aforementioned dataset.
The cloud-users are getting impatient by experiencing the delays in loading the content of the web applications over the internet, which is usually caused by the complex latency while accessing the cloud datacenters distant from the cloud-users. It is becoming a catastrophic situation in availing the services and applications over the cloud-centric network. In cloud, workload is distributed across the multiple layers which also increases the latency. Time-sensitive Internet of Things (IoT) applications and services, usually in a cloud platform, are running over various virtual machines (VM’s) and possess high complexities while interacting. They face difficulties in the consolidations of the various applications containing heterog
... Show MoreLeap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F
... Show MoreObjective(s): To measure the level of job satisfaction and job performance of nurses and to find out
the association between participants' socio-demographic characteristic of nurse and their job
satisfaction and job performance.
Methodology: A descriptive analytic study design was carried out to measure the nurses' level of job
satisfaction and job performance in Al-Suwaira general hospital and to find out the association between
nurses and their socio-demographic characteristic. The study was started from March 5th, 2017 to
September 31th, 2017. The sample was Non - probability (purposive) sample of (100) nurses were
selected according to the study that are actual working in nursing department in Al-Suwaira General<
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreIn this review paper a number of studies and researches are surveyed, in order to assist the upcoming researchers, to know about the techniques available in the field of semantic based video retrieval. The video retrieval system is used for finding the users’ desired video among a huge number of available videos on the Internet or database. This paper gives a general discussion on the overall process of the semantic video retrieval phases. In addition to its present a generic review of techniques that has been proposed to solve the semantic gap as the major scientific problem in semantic based video retrieval. The semantic gap is formed because of the difference between the low level features that are extracted from video content and u
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u
... Show More