Preferred Language
Articles
/
ijs-3169
Development of a Job Applicants E-government System Based on Web Mining Classification Methods
...Show More Authors

     Governmental establishments are maintaining historical data for job applicants for future analysis of predication, improvement of benefits, profits, and development of organizations and institutions. In e-government, a decision can be made about job seekers after mining in their information that will lead to a beneficial insight. This paper proposes the development and implementation of an applicant's appropriate job prediction system to suit his or her skills using web content classification algorithms (Logit Boost, j48, PART, Hoeffding Tree, Naive Bayes). Furthermore, the results of the classification algorithms are compared based on data sets called "job classification data" sets. Experimental results indicated that the algorithm j48 had the highest precision (94.80%) compared to other algorithms for the aforementioned dataset.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 17 2020
Journal Name
International Journal Of Applied Mechanics And Engineering
Analysis of Structural Concrete Bar Members Based on Secant Stiffness Methods
...Show More Authors
Abstract<p>In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A compari</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Mon Aug 17 2020
Journal Name
International Journal Of Applied Mechanics And Engineering
Analysis of structural concrete bar members based on secant stiffness methods
...Show More Authors

In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated

... Show More
Scopus
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Comparison of Different DEM Generation Methods based on Open Source Datasets
...Show More Authors

Digital Elevation Model (DEM) is one of the developed techniques for relief representation.  The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kri

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Comparison of Different DEM Generation Methods based on Open Source Datasets
...Show More Authors

Digital Elevation Model (DEM) is one of the developed techniques for relief representation.  The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kriging, IDW (inver

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
A proposed audit program for a comprehensive electronic banking system based on business risks : applied research
...Show More Authors

The research seeks to identify the comprehensive electronic banking system and the role of the auditor in light of the customer's application of electronic systems that depend on the Internet in providing its services, as a proposed audit program has been prepared in accordance with international auditing controls and standards based on the study of the customer's environment and the analysis of external and internal risks in the light of financial and non-financial indicators, the research reached a set of conclusions, most notably, increasing the dependence of banks on the comprehensive banking system for its ability to provide new and diverse banking services, The researcher suggested several recommendations, the most important of whi

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Data Mining Techniques for Iraqi Biochemical Dataset Analysis
...Show More Authors

This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Information Engineering And Applications
Development of Prognosis Factors in a Scoring System for Predicting of Breast Cancer Mortality
...Show More Authors

Today, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
A novel fusion-based approach for the classification of packets in wireless body area networks
...Show More Authors

This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref