World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patients at an early stage to avoid emergency situations. This method provides a promising approach in the analysis of either structured or unstructured datasets to produce very substantial pattern discoveries. By defining the generic architecture for the prediction model, we reviewed various papers involved in similar fields, based on suggested methodologies and their associated outcomes. The study discussed the pros and cons of different prediction models using traditional and modern machine learning techniques.
The structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t
... Show MoreThe undetected error probability is an important measure to assess the communication reliability provided by any error coding scheme. Two error coding schemes namely, Joint crosstalk avoidance and Triple Error Correction (JTEC) and JTEC with Simultaneous Quadruple Error Detection (JTEC-SQED), provide both crosstalk reduction and multi-bit error correction/detection features. The available undetected error probability model yields an upper bound value which does not give accurate estimation on the reliability provided. This paper presents an improved mathematical model to estimate the undetected error probability of these two joint coding schemes. According to the decoding algorithm the errors are classified into patterns and their decoding
... Show MoreThe research aims to identify the level of functional engagement and hope-based thinking of kindergarten teachers, identify if there is a significant difference in functional engagement and hope-based thinking in terms of specialization and years of service for kindergarten teachers, identify if there is a significant correlation between functional engagement and hope-based thinking of kindergarten teachers. The current research is determined by kindergarten teachers in the Second Rusafa Baghdad Education Directorate for the academic year (2022-2023). In order to achieve the objectives of the research, the researcher prepared a functional engagement scale, which consists of (45) items in three areas: Perceptual and functional engagement
... Show MoreIn medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accur
... Show MoreThe location of fire brigade stations and equipment has a significant impact on the efficacy and efficiency of fire brigade department services. The challenge addressed by this study was that the fire brigade department required a consistent and repeatable technique to assess the response capabilities and safeguarding levels offered as the city of Samawah/Iraq grew and changed. Evaluating the locations of the current fire brigade stations in the city of Samawah is the aspect addressed by the research to determine the accuracy and validity of the locations of these stations by the competent authorities and their suitability to the area of the city’s neighborhoods and its residents. The Iraqi Ministry of Housing, Construction, Municipalitie
... Show MoreEvaluation of Dot. ELISA test for Diagnosis Visceral Leishmaniasis in Infected Children