World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patients at an early stage to avoid emergency situations. This method provides a promising approach in the analysis of either structured or unstructured datasets to produce very substantial pattern discoveries. By defining the generic architecture for the prediction model, we reviewed various papers involved in similar fields, based on suggested methodologies and their associated outcomes. The study discussed the pros and cons of different prediction models using traditional and modern machine learning techniques.
Cloud computing is an interesting technology that allows customers to have convenient, on-demand network connectivity based on their needs with minimal maintenance and contact between cloud providers. The issue of security has arisen as a serious concern, particularly in the case of cloud computing, where data is stored and accessible via the Internet from a third-party storage system. It is critical to ensure that data is only accessible to the appropriate individuals and that it is not stored in third-party locations. Because third-party services frequently make backup copies of uploaded data for security reasons, removing the data the owner submits does not guarantee the removal of the data from the cloud. Cloud data storag
... Show MoreBackground: Sinusitis is an inflammatory condition that affects the mucous membrane lining the airways. Chronic rhinosinusitis and acute rhinosinusitis are the two types. Rhinosinusitis is characterized by facial pain, congestion, and headache. Due to the widespread prevalence of sinusitis, there must be an evaluation of the case because the diagnoses are more serious in the advanced stages of the disease and impact the outcome of care. Objectives: The objective of this study was to conduct a literature evaluation of chronic and acute rhinosinusitis, risk factors, symptoms and signs of sinusitis, diagnostic, sinusitis treatment, and antibiotic treatment, as well as new databases. Conclusion:
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThe Frequency-hopping Spread Spectrum (FHSS) systems and techniques are using in military and civilianradar recently and in the communication system for securing the information on wireless communications link channels, for example in the Wi-Fi 8.02.X IEEE using multiple number bandwidth and frequencies in the wireless channel in order to hopping on them for increasing the security level during the broadcast, but nowadays FHSS problem, which is, any Smart Software Defined Radio (S-SDR) can easily detect a wireless signal at the transmitter and the receiver for the hopping sequence in both of these, then duplicate this sequence in order to hack the signal on both transmitter and receiver messages using the order of the se
... Show MoreCoronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreResearchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show More