This research aims to give a splitting structure of the projective line over the finite field of order twenty-seven that can be found depending on the factors of the line order. Also, the line was partitioned by orbits using the companion matrix. Finally, we showed the number of projectively inequivalent -arcs on the conic through the standard frame of the plane PG(1,27)
A -set in the projective line is a set of projectively distinct points. From the fundamental theorem over the projective line, all -sets are projectively equivalent. In this research, the inequivalent -sets in have been computed and each -set classified to its -sets where Also, the has been splitting into two distinct -sets, equivalent and inequivalent.
In this work, new kinds of blocking sets in a projective plane over Galois field PG(2,q) can be obtained. These kinds are called the complete blocking set and maximum blocking set. Some results can be obtained about them.
In this thesis, some sets of subspaces of projective plane PG(2,q) over Galois field GF(q) and the relations between them by some theorems and examples can be shown.
A cap of size and degree in a projective space, (briefly; (k,r)-cap) is a set of points with the property that each line in the space meet it in at most points. The aim of this research is to extend the size and degree of complete caps and incomplete caps, (k, r)-caps of degree r<12 in the finite projective space of dimension three over the finite field of order eleven, which already exist and founded by the action of subgroups of the general linear group over the finite field of order eleven and degree four, to (k+i,r+1) -complete caps. These caps have been classified by giving the t_i-distribution and -distribution. The Gap programming has been used to execute the designed algorit
... Show MoreThe purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3  n  11. A (k,n)-arcs is a set of k points no n + 1 of which are collinear. A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc
The aim of this paper is to construct cyclic subgroups of the projective general linear group over from the companion matrix, and then form caps of various degrees in . Geometric properties of these caps as secant distributions and index distributions are given and determined if they are complete. Also, partitioned of into disjoint lines is discussed.
The aim of this paper is to present a weak form of -light functions by using -open set which is -light function, and to offer new concepts of disconnected spaces and totally disconnected spaces. The relation between them have been studied. Also, a new form of -totally disconnected and inversely -totally disconnected function have been defined, some examples and facts was submitted.
In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show More-convex sets and -convex functions, which are considered as an important class of generalized convex sets and convex functions, have been introduced and studied by Youness [5] and other researchers. This class has recently extended, by Youness, to strongly -convex sets and strongly -convex functions. In these generalized classes, the definitions of the classical convex sets and convex functions are relaxed and introduced with respect to a mapping . In this paper, new properties of strongly -convex sets are presented. We define strongly -convex hull, strongly -convex cone, and strongly -convex cone hull and we proof some of their properties. Some examples to illustrate the aforementioned concepts and to cl
... Show MoreThe main objective of this paper is to calculate the perturbations of tide effect on LEO's satellites . In order to achieve this goal, the changes in the orbital elements which include the semi major axis (a) eccentricity (e) inclination , right ascension of ascending nodes ( ), and fifth element argument of perigee ( ) must be employed. In the absence of perturbations, these element remain constant. The results show that the effect of tidal perturbation on the orbital elements depends on the inclination of the satellite orbit. The variation in the ratio decreases with increasing the inclination of satellite, while it increases with increasing the time.