Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.
Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b
... Show MoreIn this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show MoreThe problem of dark matter in galaxies is still one of the most important unsolved problems in the contemporary extragalactic astronomy and cosmology. The existence of a significant dynamic difference between the visible mass and the conventional mass of galaxies firmly establishes observational result. In this paper an unconventional explanation will be tested as an alternative to the cold dark matter hypothesis; which is called the modified Newtonian dynamics (MOND).
In this paper covers the simulation of galactic evolutions; where the two hypotheses are tested via the rotation curves. N-body simulation was carried adopting different configuration lik
In this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.
In this paper we present a study on Peristaltic of fractional generalized Maxwell viscoelastic fluid through a porous medium. A modified Darcy-Brinkman model is utilized to simulate the flow of a generalized Maxwell fluid in a porous medium in an inclined channel with slip effect. The governing equation is simplified by assuming long wavelength and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, permeability parameter, Froude number, Reynolds number and inclination of channel on
... Show MoreThis paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.
House 21 fungal isolates fungus to the analyst Albroca output of manufactured blood clot from the Blama human blood showed positive fungi to test analyzes blood clot variation in times where decomposition recorded fungi
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
Umbilical cord blood (UCB) contains hematopoietic and mesenchymal stem cells(HSCs,MSCs) that have proven useful clinically to reconstitute the hematopoietic system in children and some adults . Fifteen cord blood samples were collected from placenta of newly delivered women in AlKadhemia hospital in Baghdad for normal vaginal delivery. Mono nucleated cells (MNCs) were isolated by using density gradient centrifugation and the MNCs count and viability were determinated by trypan blue.MNCs were cryopreserved using the cryoprotectant solution of 10% concentration of dimethyl sulfoxid (DMSO)using slow cooling and rapid thaw. The aim of the present study
... Show MoreThe human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simu