This paper aims to define and study new separation axioms based on the b-open sets in topological ordered spaces, namely strong - -ordered spaces ( ). These new separation axioms are lying between strong -ordered spaces and - - spaces ( ). The implications of these new separation axioms among themselves and other existing types are studied, giving several examples and counterexamples. Also, several properties of these spaces are investigated; for example, we show that the property of strong - -ordered spaces ( ) is an inherited property under open subspaces.
The notions ÇÂsemiÂgÂclosedness and ÇÂsemiÂgÂopenness were used to generalize and introduced new classes of separation axioms in ideal spaces. Many relations among several sorts of these classes are summarized, also.
In this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.
2000 Mathematics Subject Classification: 54A05
In this article an attempt has been made to procure the concept of pairwise neutrosophic simply open set, pairwise neutrosophic simply continuous mapping, pairwise neutrosophic simply open mapping, pairwise neutrosophic simply compactness, pairwise neutrosophic simply b-open set, pairwise neutrosophic simply b-continuous mapping, pairwise neutrosophic simply b-open mapping and pairwise neutrosophic simply b-compactness via neutrosophic bi-topological spaces (in short NBTS). Besides, we furnish few illustrative examples on them via NBTS. Further, we investigate some basic properties of them, and formulate several results on NBTSs.
In this paper, new concepts of maximal and minimal regular s are introduced and discussed. Some basic properties are obtained. The relation between maximal and minimal regular s and some other types of open sets such as regular open sets and -open sets are investigated.
In this paper, we procure the notions of neutrosophic simply b-open set, neutrosophic simply b-open cover, and neutrosophic simply b-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply
b-compactness. Further, we furnish some counter examples where the result fails.
In this paper, we offer and study a novel type generalized soft-open sets in topological spaces, named soft Æ„c-open sets. Relationships of this set with other types of generalized soft-open sets are discussed, definitions of soft Æ„ , soft bc- closure and soft bc- interior are introduced, and its properties are investigated. Also, we introduce and explore several characterizations and properties of this type of sets.
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
Our main interest in this study is to look for soft semi separations axioms in soft quad topological spaces. We talk over and focus our attention on soft semi separation axioms in soft quad topological spaces with respect to ordinary points and soft points. Moreover study the inherited characteristics at different angles with respect to ordinary points and soft points. Some of their central properties in soft quad topological spaces are also brought under examination.
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
In the present paper, new concepts of generalized continuous mappings, namely Еc and δ-ßc-continuous mappings have been introduced and studied by using a new generalized of open sets Еc and δ-ßc-open sets ,respectively. Several characterizations and fundamental properties of these forms of generalized continuous mappings are obtained. Moreover, the graphs of Еc-continuous and δ-ßc-continuous mappings have been investigated. In addition, the relationships among Еc-continuous and δ-ßc-continuous mappings and other well-known forms of g
... Show More