Preferred Language
Articles
/
ijs-2949
Software Fault Estimation Tool Based on Object-Oriented Metrics
...Show More Authors

A fault is an error that has effects on system behaviour. A software metric is a value that represents the degree to which software processes work properly and where faults are more probable to occur. In this research, we study the effects of removing redundancy and log transformation based on threshold values for identifying faults-prone classes of software. The study also contains a comparison of the metric values of an original dataset with those after removing redundancy and log transformation. E-learning and system dataset were taken as case studies. The fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% after removing redundancy and log transformation, respectively. These results impacted directly the number of classes detected, which ranged between 1-20 and 1-7 for the original dataset and 1-7 and 0-3) after removing redundancy and log transformation. The Skewness of the dataset was deceased after applying the proposed model. The classified faulty classes need more attention in the next versions in order to reduce the ratio of faults or to do refactoring to increase the quality and performance of the current version of the software.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 26 2018
Journal Name
Communications In Computer And Information Science
A New RGB Image Encryption Based on DNA Encoding and Multi-chaotic Maps
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 10 2019
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A classification model on tumor cancer disease based mutual information and firefly algorithm
...Show More Authors

View Publication
Scopus (14)
Crossref (5)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Review Study of E-Voting System Based on Smart Contracts Using Blockchain Technology
...Show More Authors

Voting is an important procedure in democratic societies in different countries, including Iraq. Electronic voting (E-voting) is becoming more prevalent due to reducing administrative costs and burdens. E-voting systems have many restrictions that affect the electoral process. For example, fraud, tampering with ballot boxes, taking many hours to announce results, and the difficulty of reaching polling stations. Over the last decade, blockchain and smart contract technologies have gained widespread adoption in various sectors, such as cryptocurrencies, finance, banking, and most notably in e-voting systems. If utilized properly, the developer demonstrates properties that are promising for their properties, such as security, privacy, trans

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Nov 19 2017
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Image Compression based on Fixed Predictor Multiresolution Thresholding of Linear Polynomial Nearlossless Techniques
...Show More Authors

Image compression is a serious issue in computer storage and transmission,  that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the  mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Short Answer Grading System Based on Semantic Networks and Support Vector Machine
...Show More Authors

      In education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 24 2022
Journal Name
Energies
Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions
...Show More Authors

In low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Modified Blowfish Algorithm for Image Encryption using Multi Keys based on five Sboxes
...Show More Authors

In this paper, a new modification was proposed to enhance the security level in the Blowfish algorithm by increasing the difficulty of cracking the original message which will lead to be safe against unauthorized attack. This algorithm is a symmetric variable-length key, 64-bit block cipher and it is implemented using gray scale images of different sizes. Instead of using a single key in cipher operation, another key (KEY2) of one byte length was used in the proposed algorithm which has taken place in the Feistel function in the first round both in encryption and decryption processes. In addition, the proposed modified Blowfish algorithm uses five Sboxes instead of four; the additional key (KEY2) is selected randomly from additional Sbox

... Show More
View Publication Preview PDF
Publication Date
Fri May 04 2018
Journal Name
Wireless Personal Communications
IFRS: An Indexed Face Recognition System Based on Face Recognition and RFID Technologies
...Show More Authors

View Publication
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref