A fault is an error that has effects on system behaviour. A software metric is a value that represents the degree to which software processes work properly and where faults are more probable to occur. In this research, we study the effects of removing redundancy and log transformation based on threshold values for identifying faults-prone classes of software. The study also contains a comparison of the metric values of an original dataset with those after removing redundancy and log transformation. E-learning and system dataset were taken as case studies. The fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% after removing redundancy and log transformation, respectively. These results impacted directly the number of classes detected, which ranged between 1-20 and 1-7 for the original dataset and 1-7 and 0-3) after removing redundancy and log transformation. The Skewness of the dataset was deceased after applying the proposed model. The classified faulty classes need more attention in the next versions in order to reduce the ratio of faults or to do refactoring to increase the quality and performance of the current version of the software.
This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreThis study aims at shedding light on the linguistic significance of collocation networks in the academic writing context. Following Firth’s principle “You shall know a word by the company it keeps.” The study intends to examine three selected nodes (i.e. research, study, and paper) shared collocations in an academic context. This is achieved by using the corpus linguistic tool; GraphColl in #LancsBox software version 5 which was announced in June 2020 in analyzing selected nodes. The study focuses on academic writing of two corpora which were designed and collected especially to serve the purpose of the study. The corpora consist of a collection of abstracts extracted from two different academic journals that publish for writ
... Show MoreThe source and channel coding for wireless data transmission can reduce
distortion, complexity and delay in multimedia services. In this paper, a joint sourcechannel
coding is proposed for orthogonal frequency division multiplexing -
interleave division multiple access (OFDM-IDMA) systems to transmit the
compressed images over noisy channels. OFDM-IDMA combines advantages of
both OFDM and IDMA, where OFDM removes inter symbol interference (ISI)
problems and IDMA removes multiple access interference (MAI). Convolutional
coding is used as a channel coding, while the hybrid compression method is used as
a source coding scheme. The hybrid compression scheme is based on wavelet
transform, bit plane slicing, polynomi
The spread of Coronavirus has forced populations around the globe to adopt strict measures such as lockdown, home quarantine, and home office. Moreover, in the current development of network communications, people can exploit internet and intranet features in many systems that need to be faster, more efficient, and available on time. Furthermore, with the benefits of using internet-of-things (IoT), through which things are generated, gained, discovered, and proposed without interference, the user could receive the last status without exertion and direct contact (i.e., in a contactless manner). These specifications can be used in a transaction system. This paper proposes an electronic transaction system (ETS) as a replacement for the curr
... Show Moreواحدة من أكثر مواد السيراميك الهيكلية الواعدة هي كربيد السيليكون(SiC) ، حيث له خصائص حرارية وكهروميكانيكية ممتازة. هذه الخصائص مفيدة ل CMC لتعزيز أداء المركب خاصة عند إضافات النانو المتكاملة. في هذا البحث, تم تصنيع مركب SiC من SiC بثلاثة تركيزات مع ZnO و Si. تم اختبار الخواص المغناطيسية لجميع المخاليط باستخدام مراقبة العينة الاهتزازية (VSM). تم تلبيد العينات الخضراء في فرن التلبيد عند 1600 درجة مئوية في بيئة النيتروجي
... Show MoreClobetasol propionate (CP) is a super potent corticosteroid widely used to treat various skin disorders such as atopic dermatitis and psoriasis. However, its utility for topical application is hampered due to its common side effects, such as skin atrophy, steroidal acne, hypopigmentation, and allergic contact dermatitis. Microsponge is a unique three-dimensional microstructure particle with micro and nano-meters-wide cavities, which can encapsulate both hydrophilic and lipophilic drugs providing increased efficacy and safety. The aim of the current study is to prepare and optimize clobetasol-loaded microsponges. The emulsion solvent diffusion method is used for the preparation of ethylcellulose (EC)-based microsponges. The impact of
... Show More