The major target of this paper is to study a confirmed class of meromorphic univalent functions . We procure several results, such as those related to coefficient estimates, distortion and growth theorem, radii of starlikeness, and convexity for this class, n additionto hadamard product, convex combination, closure theorem, integral operators, and neighborhoods.
Through this study, the following has been proven, if is an algebraically paranormal operator acting on separable Hilbert space, then satisfies the ( ) property and is also satisfies the ( ) property for all . These results are also achieved for ( ) property.
In addition, we prove that for a polaroid operator with finite ascent then after the property ( ) holds for for all .
In this paper, we define certain subclasses of analytic univalent function associated with quasi-subordination. Some results such as coefficient bounds and Fekete-Szego bounds for the functions belonging to these subclasses are derived.
We introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.
The aim of this paper is to introduce a certain family of new classes of multivalent functions associated with subordination. The various results obtained here for each of these classes include coefficient estimates radius of convexity, distortion and growth theorem.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
In this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.
Our goal in the present paper is to recall the concept of general fuzzy normed space and its basic properties in order to define the adjoint operator of a general fuzzy bounded operator from a general fuzzy normed space V into another general fuzzy normed space U. After that basic properties of the adjoint operator were proved then the definition of fuzzy reflexive general fuzzy normed space was introduced in order to prove that every finite dimensional general fuzzy normed space is fuzzy reflexive.
Some relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
Through this study, the following has been proven, if is an algebraically paranormal operator acting on separable Hilbert space, then satisfies the ( ) property and is also satisfies the ( ) property for all . These results are also achieved for ( ) property. In addition, we prove that for a polaroid operator with finite ascent then after the property ( ) holds for for all.