The conventional procedures of clustering algorithms are incapable of overcoming the difficulty of managing and analyzing the rapid growth of generated data from different sources. Using the concept of parallel clustering is one of the robust solutions to this problem. Apache Hadoop architecture is one of the assortment ecosystems that provide the capability to store and process the data in a distributed and parallel fashion. In this paper, a parallel model is designed to process the k-means clustering algorithm in the Apache Hadoop ecosystem by connecting three nodes, one is for server (name) nodes and the other two are for clients (data) nodes. The aim is to speed up the time of managing the massive scale of healthcare insurance dataset with the size of 11 GB and also using machine learning algorithms, which are provided by the Mahout Framework. The experimental results depict that the proposed model can efficiently process large datasets. The parallel k-means algorithm outperforms the sequential k-means algorithm based on the execution time of the algorithm, where the required time to execute a data size of 11 GB is around 1.847 hours using the parallel k-means algorithm, while it equals 68.567 hours using the sequential k-means algorithm. As a result, we deduce that when the nodes number in the parallel system increases, the computation time of the proposed algorithm decreases.
Derivative spectrophotometry is one of the analytical chemistry techniques used
in the analysis and determination of chemicals and pharmaceuticals. This method is
characterized by simplicity, sensitivity and speed. Derivative of Spectra conducted
in several ways, including optical, electronic and mathematical. This operation
usually be done within spectrophotometer. The paper is based on form of a new
program. The program construction is written in Visual Basic language within
Microsoft Excel. The program is able to transform the first, second, third and fourth
derivatives of data and the return of these derivatives to zero order (normal plot).
The program was applied on experimental (trial) and reals values of su
The huge evolving in the information technologies, especially in the few last decades, has produced an increase in the volume of data on the World Wide Web, which is still growing significantly. Retrieving the relevant information on the Internet or any data source with a query created by a few words has become a big challenge. To override this, query expansion (QE) has an important function in improving the information retrieval (IR), where the original query of user is recreated to a new query by appending new related terms with the same importance. One of the problems of query expansion is the choosing of suitable terms. This problem leads to another challenge of how to retrieve the important documents with high precision, high recall
... Show MorePortable devices such as smartphones, tablet PCs, and PDAs are a useful combination of hardware and software turned toward the mobile workers. While they present the ability to review documents, communicate via electronic mail, appointments management, meetings, etc. They usually lack a variety of essential security features. To address the security concerns of sensitive data, many individuals and organizations, knowing the associated threats mitigate them through improving authentication of users, encryption of content, protection from malware, firewalls, intrusion prevention, etc. However, no standards have been developed yet to determine whether such mobile data management systems adequately provide the fu
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreSecure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.
This research aims to present some results for conceptions of quasi -hyponormal operator defined on Hilbert space . Signified by the -operator, together with some significant characteristics of this operator and various theorems pertaining to this operator are discussed, as well as, we discussed the null space and range of these kinds of operators.
Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
Na+/K+-ATPase is a prevalent enzyme that maintains the Na+ and K+ gradients across the cell membrane by transporting three Na+ out and two K+ into the cell, the aim of this study is to provide detailed mechanistic insights, potentially with important effects on physiological regulation of active Na and K transport in tissues of Aerobic Thyroid Patient. Thyroid tissues were obtained from a 35 year old patients, the operation was carried out at the Al-Hadi Specialist Hospital in Samarra city, the sample was stored at -20ºC until used. The purification protocol included Salt Precipitation, Ion Exchange Chromatography, Gel Filtration and E
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show More