Preferred Language
Articles
/
ijs-2747
A Parallel Clustering Analysis Based on Hadoop Multi-Node and Apache Mahout
...Show More Authors

     The conventional procedures of clustering algorithms are incapable of overcoming the difficulty of managing and analyzing the rapid growth of generated data from different sources. Using the concept of parallel clustering is one of the robust solutions to this problem. Apache Hadoop architecture is one of the assortment ecosystems that provide the capability to store and process the data in a distributed and parallel fashion. In this paper, a parallel model is designed to process the k-means clustering algorithm in the Apache Hadoop ecosystem by connecting three nodes, one is for server (name) nodes and the other two are for clients (data) nodes. The aim is to speed up the time of managing the massive scale of healthcare insurance dataset with the size of 11 GB and also using machine learning algorithms, which are provided by the Mahout Framework. The experimental results depict that the proposed model can efficiently process large datasets. The parallel k-means algorithm outperforms the sequential k-means algorithm based on the execution time of the algorithm, where the required time to execute a data size of 11 GB is around 1.847 hours using the parallel k-means algorithm, while it equals 68.567 hours using the sequential k-means algorithm. As a result, we deduce that when the nodes number in the parallel system increases, the computation time of the proposed algorithm decreases.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
The International Journal Of Nonlinear Analysis And Applications
Developing Bulk Arrival Queuing Models with Constant Batch Policy Under Uncertainty Data Using (0-1) Variables
...Show More Authors

This paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional b

... Show More
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Educational Data Mining For Predicting Academic Student Performance Using Active Classification
...Show More Authors

     The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluation of Thermal Reactor Fission Products Cross Sections
...Show More Authors

      The production of fission products during reactor operation has a very important effect on  reactor reactivity .Results of neutron cross section evaluations are presented for the main product nuclides considered as being the most important  for reactor calculation and burn-up consideration . Data from the main international libraries considered as containing the most up-to-date nuclear data   and the latest experimental measurements are considered in the evaluation processes, we describe the evaluated cross sections of the fission product nuclides by making inter comparison of the data and point out the discrepancies among libraries.

 

View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Seismic Data Processing of Subba Oil Field in South Iraq
...Show More Authors

Evaluation study was conducted for seismic interpretation using two-dimensional seismic data for Subba oil field, which is located in the southern Iraq. The Subba oil field was discovered in 1973 through the results of the seismic surveys and the digging of the first exploratory well SU-1 in 1975 to the south of the Subba oil field. The entire length of the field is 35 km and its width is about 10 km. The Subba oil field contains 15 wells most of them distributed in the central of the field.

     This study is dealing with the field data and how to process it for the purpose of interpretation; the processes included conversion of field data format, compensation of lost data and noise disposal, as well as the a

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 26 2019
Journal Name
Journal Of Contemporary Medical Sciences
Breast Cancer Decisive Parameters for Iraqi Women via Data Mining Techniques
...Show More Authors

Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Galaxy Morphological Image Classification using ResNet
...Show More Authors

     Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cubic Of Positive Implicative Ideals In KU- Semigroup
...Show More Authors

In this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some exam

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Non-Parametric Quality Control Methods
...Show More Authors

    Multivariate Non-Parametric control charts were used to monitoring the data that generated by using the simulation, whether they are within control limits or not. Since that non-parametric methods do not require any assumptions about the distribution of the data.  This research aims to apply the multivariate non-parametric quality control methods, which are Multivariate Wilcoxon Signed-Rank ( ) , kernel principal component analysis (KPCA) and k-nearest neighbor (

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution under Type-I Censored Data
...Show More Authors

     This paper discusses estimating the two scale parameters of Exponential-Rayleigh distribution for singly type one censored data which is one of the most important Rights censored data, using the maximum likelihood estimation method (MLEM) which is one of the most popular and widely used classic methods, based on an iterative procedure such as the Newton-Raphson to find estimated values for these two scale parameters by using real data for COVID-19 was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. The duration of the study was in the interval 4/5/2020 until 31/8/2020 equivalent to 120 days, where the number of patients who entered the (study) hospital with sample size is (n=785). The number o

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref