The concept of strong soft pre-open set was initiated by Biswas and Parsanann.We utilize this notion to study several characterizations and properties of this set. We investigate the relationships between this set and other types of soft open sets. Moreover, the properties of the strong soft pre-interior and closure are discussed. Furthermore, we define a new concept by using strong soft pre-closed that we denote as locally strong soft pre-closed, in which several results are obtained. We establish a new type of soft pre-open set, namely soft pre-open. Also, we continue to study pre- soft open set and discuss the relationships among all these sets. Some counter examples are given to show some relationships obtained in this work.
In this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
In this paper, we will focus to one of the recent applications of PU-algebras in the coding theory, namely the construction of codes by soft sets PU-valued functions. First, we shall introduce the notion of soft sets PU-valued functions on PU-algebra and investigate some of its related properties.Moreover, the codes generated by a soft sets PU-valued function are constructed and several examples are given. Furthermore, example with graphs of binary block code constructed from a soft sets PU-valued function is constructed.
Let M be a prime Γ-ring satisfying abc abc for all a,b,cM and
, with center Z, and U be a Lie (Jordan) ideal. A mapping d :M M
is called Γ- centralizing if u d u Z [ , ( )] for all uU and .In this paper
, we studied Lie and Jordan ideal in a prime Γ - ring M together with Γ -
centralizing derivations on U.
Let
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In this paper, we introduce the concept of Jordan –algebra, special Jordan –algebra and triple –homomorphisms. We also introduce Bi - –derivations and Annihilator of Jordan algebra. Finally, we study the triple –homomorphisms and Bi - –derivations on Jordan algebra.
In this work we explain and discuss new notion of fibrewise topological spaces, calledfibrewise soft ideal topological spaces, Also, we show the notions of fibrewise closed soft ideal topological spaces, fibrewise open soft ideal topological spaces and fibrewise soft near ideal topological spaces.