The North Central Coast of Vietnam has a wide distribution of loose sand which is often exposed on the surface. The thickness changes from a few meters to over ten meters. This sand with the loose state can be sensitive to the dynamic loads, such as earthquakes, traffic load, or machine foundations. It can be liquefied under these loadings, which might destroy the ground and buildings. The Standard Penetration Test (SPT) is widely used in engineering practice and its values can be useful for the assessment of soil liquefaction potential. Thus, this article presents some ground profiles in some sites in the North Central Coast of Vietnam and determines the liquefaction potential of sand based on SPT and using three parameters, including the Factor of Safety against Liquefaction (FSLIQ), Liquefaction Potential Index (LPI), and Liquefaction Severity Number (LSN). The research results show that the FSLIQ, LPI, and LSN values depend on the depth of sand samples and the SPT values. In this study, the sand distributed from 2.0 to 18.0m with (N1)60cs value of less than 20 has high liquefaction potential with FSLIQ<1, LPI is often higher than 0.73, and LSN is often higher than 10. The results also show that many soil profiles have high liquefaction potential. These results should be considered for construction activities in this area.
Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each paramet
... Show MoreThe study was carried out in plant tissue culture laboratory, University of Baghdad during the period 2017-2019, as factorial experiment in complete randomized design, to study the effect of PEG at (0, 2, 4, 6 and 8%) on physiological and chemical changes in callus of three sunflower (Ishaqi 1, Aqmar and Al-haga) induced by the cultivation of the young stem in vitro under water stress. The content of callus cells of SOD, POD, CAT and APX enzymes as well as total dissolved carbohydrate were determined as indicators to determine the effect of PEG in callus tissue cells cultivated on medium equipped with the PEG concentrations. The results showed that cultivars were differs significantly, and A-haja variety was superior in increasing SOD to 12
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
The study included studying some of the optimum environmental conditions(temperature ,light intensity ) on the production of several green algae Scendesmus quadricauda and Chlorella vulgaris in a selected culture and municipal wastewater . The study also included the recording of growth rate ,doubling time and removal of phosphate and nitrate , maximum rate was recorded to the growth with minimum in doubling time and maximum removal rate of nitrogen-nitrate and phosor- phosphate in each selected culture and municipal wastewater in each species of green algae at 25 C? and a light intensity 380 µ E / m2 / s.
A biological experiment was conducted to study the effect of different concentrations of gibberellic acid and urea fertilizer and their interactions in some characteristic related to green growth of fenugreek plant (Trigonella foenum-graecum L.) in the green house of Department of Biology in College of Education (IbnÂalÂHaitham)/Baghdad University for the growth season (2008Â2009) in pots of (5 kgm) soil per pot, and four concentrations of gibberellic acid were used, they are (0,25,50,100) ppm, these concentrations were sprayed after the perfection of the fourth leaf for the plant. Moreover, three levels of urea fertilizer were used, they were (0.25, 0.50, 1.00) gm/pot. These concentrations were added as two p
... Show MoreThe aim of this work is to a connection between two concepts which are an interval value fuzzy set and a hyper AT-algebra. Also, some properties of these concepts are found. The notions of IVF hyper AT-subalgebras, IVF hyper ideals and IVF hyper AT-ideals are defined. Then IVF (weak, strong) hyper ideals and IVF (weak, strong) hyper AT-ideals are discussed. After that, some relations among these ideals are presented and some interesting theorems are proved.
Electron Transfer reaction rate constants at Semiconductor / Liquid interfaces are calculated dy using the Fermi Golden Rule for Semiconductor. The reorganization energy   eVï„ is computed for Semiconductor / Liquid Interfaces system in two solvents and compared with experimental value. The driving force (free energy) ΔGo(eV) is calculated depending on spectrum Ru(H2L`)2 (NCS)2 . The transfer is treated according with weak coupling (nonadiabatic) for two – state level between the Semiconductor and acceptor molecule state.
Theoretically description of the electron transfer of the electron transfer of met/mol has been investigated in this work according to the quantum theory. By using a model that is derived depending on the first order perturbation theory, the rate constant at met/mol interface can be calculated with the calculated reorganization energy. The reorganization energy that is evaluated according to the outer sphere model is based on the electstatistics potential of the molecular donor and acceptor. The molecular parameters introduced in this model are the molecular weight, mass, density, and radius of molecule have been evaluated according to the apparent molar volume using spherical approach. Th
... Show More