Preferred Language
Articles
/
ijs-2659
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations related with the triple state equations.

The Fréchet derivative is obtained. Finally we prove the theorems of both the necessary and sufficient conditions for optimality of the triple nonlinear partial differential equations of elliptic type through the Kuhn-Tucker-Lagrange's Multipliers theorem with equality and inequality constraints.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
SIMULATION OF OPTIMAL SPEED CONTROL FOR A DC MOTOR USING LINEAR QUADRATIC REGULATOR (LQR)


This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.

Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Fixed Point Theory for Study the Controllability of Boundary Control Problems in Reflexive Banach Spaces

      In this paper, we extend the work of our proplem in uniformly convex Banach spaces using Kirk fixed point theorem. Thus the existence and sufficient conditions for the controllability to general formulation of nonlinear boundary control problems in reflexive Banach spaces are introduced. The results are obtained by using fixed point theorem that deals with nonexpanisive mapping defined on a set has normal structure and strongly continuous semigroup theory. An application is given to illustrate the  importance of the results.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Iterative Solution of Nonlinear Uniformly Continuous Mappings Equation in Arbitrary Real Banach Space

 In this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.

View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of Biological Models with Optimal Harvesting

      This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested  function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.

Scopus (8)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods

The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).

Crossref
View Publication Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Hille and Nehari Type Oscillation Criteria for Conformable Fractional Differential Equations

In this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.

Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weighted Residual Method for the System of Nonlinear Volterra Integral Equations of the Second Kind Using an Exponential Function

The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner,  Taylor manner and block- by- block(2, 3, 5).

Crossref
View Publication Preview PDF