The Late Maastrichtian–Danian phosphatic succession prevails as a deposit to the west of Rutbah region, Western Iraq. This is manifested through the lithostratigraphic sections of boreholes (K.H5\6 and K.H 5\8) drilled previously in the area. The succession is mainly composed of phosphate, shale, porcelanite, oyster and foraminiferal carbonate lithofacies belonging to Digma and Akashat formations. Three facies associations are distinguished during the study: the phosclast planktonic (FA1) that dominates the outer ramp, the phosclast foraminiferal (FA2) that dominates the mid ramp, and the quartz dolomitic phosclast (FA3) present in the inner ramp. These facies’ associations are differentiated into seventeen microfacies types. Microfacies analysis and fauna contents have shown gradual facies variation grading from a high energy inner ramp environment in the east to a low energy deep water ramp environment in the west.
In this study, lateral groundwater inflow was examined, according to the phenomena of groundwater mixing, groundwater flow and groundwater chemistry. The study region is composed of different aquifer systems; including karst-fracture media (Rattga-Jeed carbonates aquifer), fissure–porous media (Mullusi, Mullusi-Ubaid, Hartha-Rutba, and Digma-Tayarat aquifers) and porous media (Permo-carboniferous clastics rocks of Ga’ra aquifer).The aquifers are vertically super-imposed or of lateral contacts make open hydraulic connection between aquifers system. There is a severe shortage of water resources in the region because of rare precipitation and strong evapotranspiration. These conditions have hampered eco-environm
... Show MoreMishrif Formation is the most important succession in the southern part of Iraq and has extensive distribution in the Arabian Plate. The present study focuses upon the sequence stratigraphy and development of Mishrif Formation basin in four oil fields within the eastern part of the Mesopotamian Zone are:- Halfaya (Hf-1), Noor (No-1) and Abu Ghirab (AG-3) and Fauqi oil fields (Fq-1).
There are several types of microfacies were distinguished in the succession of the Mishrif Formation. Their characteristic of the grain types and carbonate texture enabled to interpret of five facies associations (depositional environments) were observed in this formation, they are: deep ma
... Show MoreThe Early Jurassic (Liassic) sequence crops out in numerous anticlines of the high folded zone of north and north-east Iraq and in the Rutba subzone (including Ubaid Formation) in west Iraq. The present study deals with siliciclastic / carbonate rocks of the 58 m-thick Ubaid Formation at Zor Hauran valley in south western Iraq. The formation consists of two parts; the lower part is composed of pebbly coarse sandstone and greenish to yellowish soft marl alternated with marly dolostone, while the upper part is characterized by light brown, well bedded dolostone, with stromatolite structure in some locations. Oval, light to dark brown nodules of chert are also present.
A detailed field lithological desc
... Show MoreThree formations were studied from seven outcrops extend from Surdash to
Shaqlawa (Cenomanian – Santonian), they comprise Dokan, Gulneri and Kometan
Formations. Four microfacies and eight submicrfacies are identified depending on
this microfacies, we determine the depositional environments. Dokan Formation is
deposited in open-marine deep shelf environment; it could be deposited at deeper
shelf to slope and basinal settings. While Gulneri Formation deposited in open sea
shelf, as well as at outer shelf settings, the sediments consist of organic–carbon rich
black shale and consider a record of the ocean anoxic event 2, Kometan Formation
represent pelagic sediments characterize the deep-marine basins in open mar
The geochemical study of the Oligocene-Miocene succession Anah, Euphrates, and Fatha formations, western Iraq, was carried out to discriminate their depositional environments. Different major and trace patterns were observed between these formations. The major elements (Ca, Mg, Fe, Mn, K, and Na) and trace elements (Li, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Cs, Ba, Hf, W, Pb, Th, and U) are a function of the setting of the depositional environments. The reefal facies have lower concentrations of MgO, Li, Cr, Co, Ni, Ga, Rb, Zr, and Ba than marine and lagoonal facies but have higher concentrations of CaO, V, and Sr than it. Whereas dolomitic limestone facies are enriched V, and U while depletion in Li, Cr, Ni, Ga, Rb, Sr, Zr, Ba, an
... Show MoreSix main microfacies are identified which are Lime Mudstone, Bioclastic Wackeston, Bioclastic Packstone-Wackestone, Bioclastic Wackestone- Mudestone, Pelagic Mudstone–Wackestone, Bioclastic Packstone -Grainston Microfacies in addition to their associated depositional environment. The diagenesis process have affected the Mishrif rocks and played a role in deteriorating reservoir porosity in well Ga-2 and enhancing it in well Ga1,3.These processes include: cementation, micritization, recrystallization,dissolution,compaction pressure solution and dolomitization.
Shiranish Formation (Late Campanian- Maastrichtian) that cropping out north east Iraq, is studied by microfacies analysis of 52 thin section collected from Hijran Section, about 10 km west Shaqlawa Town, Governorate of Erbil. According to petrography, mineralogy and organic contents, rocks are subdivided to crystalline carbonate and microfacies units (biowackstone, packstone, and mudstone facies). Biowackstone facies have high ratio of the rock components, while the other facies have low ratio. Microfacies analysis led to relatively quiet deep marine environment.
Yamama Formation is an important sequence in southern Iraq. Petrographic analysis was used to determine and analyze the microfacies and pore types. The diagenetic processes and the impacts on the petrophysical properties of the rocks were also identified. The petrographic identification was based on data of 250 thin sections of cutting and core samples from four wells that were supplied by the Iraqi Oil Exploration Company (O.E.C). The present study focuses on the depositional environment and the microfacies analysis of Yamama Formation. The results revealed several types of microfacies, including peloidal wackestone-packstone, algal wackestone-packstone, bioclastic wackestone-packstone, fo
... Show More