Preferred Language
Articles
/
ijs-2477
Weighted k-Nearest Neighbour for Image Spam Classification

E-mail is an efficient and reliable data exchange service. Spams are undesired e-mail messages which are randomly sent in bulk usually for commercial aims. Obfuscated image spamming is one of the new tricks to bypass text-based and Optical Character Recognition (OCR)-based spam filters. Image spam detection based on image visual features has the advantage of efficiency in terms of reducing the computational cost and improving the performance. In this paper, an image spam detection schema is presented. Suitable image processing techniques were used to capture the image features that can differentiate spam images from non-spam ones. Weighted k-nearest neighbor, which is a simple, yet powerful, machine learning algorithm, was used as a classifier. The results confirm the effectiveness of the proposed schema as it is evaluated over two datasets. The first dataset is a real and benchmark dataset while the other is a real-like, modern, and more challenging dataset collected from social media and many public available image spam datasets. The obtained accuracy was 99.36% and 91% on benchmark and the proposed dataset, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
Adaptive inter frame compression using image segmented technique

The computer vision branch of the artificial intelligence field is concerned with developing algorithms for analyzing video image content. Extracting edge information, which is the essential process in most pictorial pattern recognition problems. A new method of edge detection technique has been introduces in this research, for detecting boundaries.

           Selection of typical lossy techniques for encoding edge video images are also discussed in this research. The concentration is devoted to discuss the Block-Truncation coding technique and Discrete Cosine Transform (DCT) coding technique. In order to reduce the volume of pictorial data which one may need to store or transmit,

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Compression of Astronomical Image Using Five Modulus Method

The computer vision branch of the artificial intelligence field is concerned with
developing algorithms for analyzing image content. Data may be compressed by
reducing the redundancy in the original data, but this makes the data have more
errors. In this paper image compression based on a new method that has been
created for image compression which is called Five Modulus Method (FMM). The
new method consists of converting each pixel value in an (4x4, 8×8,16x16) block
into a multiple of 5 for each of the R, G and B arrays. After that, the new values
could be divided by 5 to get new values which are 6-bit length for each pixel and it
is less in storage space than the original value which is 8-bits.

View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Auto Colorization of Gray-Scale Image Using YCbCr Color Space

The process of converting gray images or videos to color ones by adding colors to them and transforming them from one-dimension to three-dimension is called colorization. This process is often used to make the image appear more visually appealing. The main problem with the colorization process is the lack of knowledge of the true colors of the objects in the picture when it is captured. For that, there is no a unique solution. In the current work, the colorization of gray images is proposed based on the utilization of the YCbCr color space. Reference image (color image) is selected for transferring the color to a gray image. Both color and gray images are transferred to YCbCr color space. Then, the Y value of the gray image is combined w

... Show More
Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 18 2014
Journal Name
International Journal Of Computer Applications
3-Level Techniques Comparison based Image Recognition

Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third

... Show More
Crossref
View Publication
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Image Compression Techniques on-Board Small Satellites

      Raw satellite images are considered high in resolution, especially multispectral images captured by remote sensing satellites. Hence, choosing the suitable compression technique for such images should be carefully considered, especially on-board small satellites, due to the limited resources. This paper presents an overview and classification of the major and state-of-the-art compression techniques utilized in most space missions launched during the last few decades, such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT)-based compression techniques. The pros and cons of the onboard compression methods are presented, giving their specifications and showing the differences among them to provide uni

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayesian and non-Bayesian estimation of the lomax model based on upper record values under weighted LINEX loss function

In this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.

Scopus (7)
Scopus
View Publication
Publication Date
Wed Nov 24 2021
Journal Name
Iraqi Journal Of Science
On The Class of (K-N)* Quasi-N-Normal Operators on Hilbert Space

In this paper, we will give another class of normal operator which is (K-N)*
quasi-n-normal operator in Hilbert space, and give some properties of this concept
as well as discussion the relation between this class with another class of normal
operators.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Stamps extraction using local adaptive k- means and ISODATA algorithms

<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi

... Show More
Scopus (12)
Crossref (4)
Scopus Crossref
View Publication