Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Trafï¬c monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time processing is very critical to keep the appropriate functionality of automated or continuously working systems. VD in road traffics has numerous applications in the transportation engineering field. In this review, different automated VD systems have been surveyed, with a focus on systems where the rectilinear stationary camera is positioned above intersections in the road rather than being mounted on the vehicle. Generally, three steps are utilized to acquire traffic condition information, including background subtraction (BS), vehicle detection and vehicle counting. First, we illustrate the concept of vehicle detection and discuss background subtraction for acquiring only moving objects. Then a variety of algorithms and techniques developed to detect vehicles are discussed beside illustrating their advantages and limitations. Finally, some limitations shared between the systems are demonstrated, such as the definition of ROI, focusing on only one aspect of detection, and the variation of accuracy with quality of videos. At the point when one can detect and classify vehicles, then it is probable to more improve the flow of the traffic and even give enormous information that can be valuable for many applications in the future.
The present study aims to assess environmental pollution using the resistivity method and geological logging technique over a municipal dumpsite of Ijagun Ijebu Ode, underlain by the Afowo Formation within the Dahomey Basin southwestern Nigeria. Forty vertical electrical resistivity soundings stations and six 2D electrical resistivity imaging profiles using Schlumberger and Wenner array respectively with maximum spread-length of 40m at each sounding and profile length of 60 m and 120 m and one borehole log were carried out. Three geoelectrical layers were obtained in the control area, their resistivity values with their corresponding depth of sediment materials is 126 Ωm – 724 Ωm at depth range 0.9 m – 1.1 m (topsoil), 6
... Show MoreEnglish
Ultrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing
... Show MoreThe purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.
In this work, watershed transform method was implemented to detect and extract tumors and abnormalities in MRI brain skull stripped images. An adaptive technique has been proposed to improve the performance of this method.Watershed transform algorithm based on clustering techniques: K-Means and FCM were implemented to reduce the oversegmentation problem. The K-Means and FCM clustered images were utilized as input images to the watershed algorithm as well as of the original image. The relative surface area of the extracted tumor region was calculated for each application. The results showed that watershed trnsform algorithm succeedeed to detect and extract the brain tumor regions very well according to the consult of a specialist doctor a
... Show MoreStudying the spatially distribution pattern of fuel station in province of Baghdad
was done by utilizing GIS techniques which they are the most powerful tools for
design, display and analysis for the spatial data. Nearest Neighbor Analysis method
was applied for analyzing the spatial distributions of the fuel stations. Baghdad was
considered to be divided in to two main parts (outskirts of Baghdad and center of
Baghdad). The nearest neighbour for all parts of Baghdad indicates for the
distribution pattern is random and differs from place to another in randomly rate.
DEMs, thus, simply regular grids of elevation measurements over the land surface.The aim of the present work is to produce high resolution DEM for certain investigated region (i.e. Baghdad University Campus\ college of science). The easting and northing of 90 locations, including the ground-base and buildings of the studied area, have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from Quick-Bird satellite sensor (with spatial resolution of 0.6 m). It has been geo-referenced and rectified using 1st order polynomial transformation. many interpolation methods have been used to estimate the elevation such as ordinary Kriging, inverse distance weight
... Show MoreThe aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove
... Show More