Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Trafï¬c monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time processing is very critical to keep the appropriate functionality of automated or continuously working systems. VD in road traffics has numerous applications in the transportation engineering field. In this review, different automated VD systems have been surveyed, with a focus on systems where the rectilinear stationary camera is positioned above intersections in the road rather than being mounted on the vehicle. Generally, three steps are utilized to acquire traffic condition information, including background subtraction (BS), vehicle detection and vehicle counting. First, we illustrate the concept of vehicle detection and discuss background subtraction for acquiring only moving objects. Then a variety of algorithms and techniques developed to detect vehicles are discussed beside illustrating their advantages and limitations. Finally, some limitations shared between the systems are demonstrated, such as the definition of ROI, focusing on only one aspect of detection, and the variation of accuracy with quality of videos. At the point when one can detect and classify vehicles, then it is probable to more improve the flow of the traffic and even give enormous information that can be valuable for many applications in the future.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreThe study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu
... Show MoreIntelligent Transportation Systems (ITS) have been developed to improve the efficiency and safety of road transport by using new technologies for communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) are a subset of ITS widely used to solve different issues associated with transportation in cities. Road traffic congestion is still the most significant problem that causes important economic and productivity damages, as well as increasing environmental effects. This paper introduces an early traffic congestion alert system in a vehicular network, using the internet of things (IoT) and fuzzy logic, for optimizing the traffic and increasing the flow. The proposed system detects critical driving conditions, or any emerge
... Show MoreThe railways network is one of the huge infrastructure projects. Therefore, dealing with these projects such as analyzing and developing should be done using appropriate tools, i.e. GIS tools. Because, traditional methods will consume resources, time, money and the results maybe not accurate. In this research, the train stations in all of Iraq’s provinces were studied and analyzed using network analysis, which is one of the most powerful techniques within GIS. A free trial copy of ArcGIS®10.2 software was used in this research in order to achieve the aim of this study. The analysis of current train stations has been done depending on the road network, because people used roads to reach those train stations. The data layers for this st
... Show More