Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Trafï¬c monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time processing is very critical to keep the appropriate functionality of automated or continuously working systems. VD in road traffics has numerous applications in the transportation engineering field. In this review, different automated VD systems have been surveyed, with a focus on systems where the rectilinear stationary camera is positioned above intersections in the road rather than being mounted on the vehicle. Generally, three steps are utilized to acquire traffic condition information, including background subtraction (BS), vehicle detection and vehicle counting. First, we illustrate the concept of vehicle detection and discuss background subtraction for acquiring only moving objects. Then a variety of algorithms and techniques developed to detect vehicles are discussed beside illustrating their advantages and limitations. Finally, some limitations shared between the systems are demonstrated, such as the definition of ROI, focusing on only one aspect of detection, and the variation of accuracy with quality of videos. At the point when one can detect and classify vehicles, then it is probable to more improve the flow of the traffic and even give enormous information that can be valuable for many applications in the future.
A -set in the projective line is a set of projectively distinct points. From the fundamental theorem over the projective line, all -sets are projectively equivalent. In this research, the inequivalent -sets in have been computed and each -set classified to its -sets where Also, the has been splitting into two distinct -sets, equivalent and inequivalent.
Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.
The tasseled cap transformation (TCT) is a useful tool for compressing spectral data into a few bands associated with physical scene characteristics with minimal information loss. TCT was originally evolved from the Landsat multi-spectral scanner (MSS) launched in 1972 and is widely adapted to modern sensors. In this study, we derived the TCT coefficients for operational land imager (OLI) sensor on-board Landsat-8 acquired at 28 Sep.2013. A newly classification method is presented; the method is based on dividing the scatterplot between the Greenness and the Brightness of TCT into regions corresponding to their reflectance values. The results from this paper suggest that the TCT coefficient derived from the OLI bands at September is the
... Show MoreAccurate detection of Electro Cardio Graphic (ECG) features is an important demand for medical purposes, therefore an accurate algorithm is required to detect these features. This paper proposes an approach to classify the cardiac arrhythmia from a normal ECG signal based on wavelet decomposition and ID3 classification algorithm. First, ECG signals are denoised using the Discrete Wavelet Transform (DWT) and the second step is extract the ECG features from the processed signal. Interactive Dichotomizer 3 (ID3) algorithm is applied to classify the different arrhythmias including normal case. Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database is used to evaluate the ID3 algorithm. The experimental resul
... Show MoreThe increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show More