In this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be quantized with different quantization values according to the energy of the block. Finally, an enhanced entropy encoder technique is applied to store the quantized coefficients. To test the level of compression, the quantitative measures of the peak signal-to-noise ratio (PSNR) and compression ratio (CR) is used to ensure the effectiveness of the suggested system. The PSNR values of the reconstructed images are taken between the intermediate range from 28dB to 40dB, the best attained compression gain on standard Lena image has been increased to be around (96.60 %). Also, the results were compared to those of the standard JPEG system utilized in the “ACDSee Ultimate 2020†software to evaluate the performance of the proposed system.
The wavelet transform has become a useful computational tool for a variety of signal and image processing applications.
The aim of this paper is to present the comparative study of various wavelet filters. Eleven different wavelet filters (Haar, Mallat, Symlets, Integer, Conflict, Daubechi 1, Daubechi 2, Daubechi 4, Daubechi 7, Daubechi 12 and Daubechi 20) are used to compress seven true color images of 256x256 as a samples. Image quality, parameters such as peak signal-to-noise ratio (PSNR), normalized mean square error have been used to evaluate the performance of wavelet filters.
In our work PSNR is used as a measure of accuracy performanc
... Show MoreIn this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
Background:
Angiogenesis plays a crucial role in tumorigensis; several reports have described a significant increase in microvessel density (MVD) in colorectal carcinogenesis There are
several methods to measure the angiogenesis in neoplasms, but immunohitochemistry seems to be the mainstay of all. This method enable us to measure the tumor microvessel densities highlighted by using antibodies directed against endothelial cell markers like CD31,CD34 or others; then assessment of MVD by manual count of the number of microvessels in what appears to be the most vascular area of the tumor(called the hot spot) using a protocol described by Weidner et al.Automated cellular imaging system is used to analyze
The Internet of Things (IoT) is a network of devices used for interconnection and data transfer. There is a dramatic increase in IoT attacks due to the lack of security mechanisms. The security mechanisms can be enhanced through the analysis and classification of these attacks. The multi-class classification of IoT botnet attacks (IBA) applied here uses a high-dimensional data set. The high-dimensional data set is a challenge in the classification process due to the requirements of a high number of computational resources. Dimensionality reduction (DR) discards irrelevant information while retaining the imperative bits from this high-dimensional data set. The DR technique proposed here is a classifier-based fe
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
In this work, a modern optical system based on modulation technique is constructed to achieve the retrieval of optical defects and distortions of the images behind dark barriers. A 800x600 analog spatial light modulator (SLM) is used in this technique with a 632.8nm He-Ne laser, a circular metallic mesh (CMM) is imaged and disturbed and then dealing with our system. The SLM was confirmed for irregularity improvement such as variable diffracted optical element (DOE) control. The obtained results showed that the effect of distortion has been treated and reduced to be minimum by controlling phase and amplitude modulation of the scattered wave front utilizing the SLM. The obtained images showed identical to the original image wi
... Show MoreIn this paper, a simple medical image compression technique is proposed, that based on utilizing the residual of autoregressive model (AR) along with bit-plane slicing (BPS) to exploit the spatial redundancy efficiently. The results showed that the compression performance of the proposed techniques is improved about twice on average compared to the traditional autoregressive, along with preserving the image quality due to considering the significant layers only of high image contribution effects.