In this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be quantized with different quantization values according to the energy of the block. Finally, an enhanced entropy encoder technique is applied to store the quantized coefficients. To test the level of compression, the quantitative measures of the peak signal-to-noise ratio (PSNR) and compression ratio (CR) is used to ensure the effectiveness of the suggested system. The PSNR values of the reconstructed images are taken between the intermediate range from 28dB to 40dB, the best attained compression gain on standard Lena image has been increased to be around (96.60 %). Also, the results were compared to those of the standard JPEG system utilized in the “ACDSee Ultimate 2020†software to evaluate the performance of the proposed system.
In the present work, pulsed laser deposition (PLD) technique was applied to a pellet of Chromium Oxide (99.999% pure) with 2.5 cm diameter and 3 mm thickness at a pressure of 5 Tons using a Hydraulic piston. The films were deposited using Nd: YAG laser λ= (4664) nm at 600 mJ and 400 number of shot on a glass substrate, The thickness of the film was (107 nm). Structural and morphological analysis showed that the films started to crystallize at annealing temperature greater than 400 oC. Absorbance and transmittance spectra were recorded in the wavelength range (300-
4400) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of d
In this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm. The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2), have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed. The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where
... Show MoreA thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show MoreZinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickn
Introduction: Diabetic foot infections are one of the most severe complications of diabetes. This study was aimed to determine the common bacterial isolates of diabetic foot infections and the in vitro antibiotic susceptibility then treatment.
Methods: A swab was taken from the foot ulcer, and the aerobic bacteria were isolated and identified by cultural, microscopic and biochemical test, then by api-20E system. After that their antibiotic susceptibility pattern was determined. Then local and systemic treatment was used to treat the diabetic foot patients.
Results: Bacterial isolates belonging to twelve species were obtained from diabetic foot patients. Gram (-) bacteria were the predominant pathogens in the diabetic foot infection
In the current work, Punica granatum L. peel, Artemisia herba-alba Asso., Matricaria chamomilla L., and Camellia sinensis extracts were used to prepare manganese dioxide (MnO2) nanoparticles utilizing a green method. Energy-dispersive X-ray (EDX) analysis, Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Filed emission-scanning electron microscopy (FE-SEM) analysis were used to evaluate the produced MnO2 NPs. FE-SEM pictures demonstrated how agglomerated nanoparticles formed. According to FE-SEM calculations, the particle size ranged from 18.7-91.5 nm. FTIR spectra show that pure Mn-O is formed, while EDX results show that Mn and O are present. The ability to suppress biofilm growth in the produced MnO
In this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
Th goal of the pr s nt p p r is to obt in some differ tial sub rdin tion an sup r dination the rems for univalent functions related b differential operator Also, we discussed some sandwich-type results.
سمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010