In this paper, we offer and study a novel type generalized soft-open sets in topological spaces, named soft Æ„c-open sets. Relationships of this set with other types of generalized soft-open sets are discussed, definitions of soft Æ„ , soft bc- closure and soft bc- interior are introduced, and its properties are investigated. Also, we introduce and explore several characterizations and properties of this type of sets.
In this article, results have been shown via using a general quasi contraction multi-valued mapping in Cat(0) space. These results are used to prove the convergence of two iteration algorithms to a fixed point and the equivalence of convergence. We also demonstrate an appropriate conditions to ensure that one is faster than others.
In thisipaper, we introduce the concepts of the modified tupledicoincidence points and the mixed finiteimonotone property. Also the existenceiand uniquenessiof modified tupled coincidenceipoint is discusses without continuous condition for mappings having imixed finite monotoneiproperty in generalizedimetric spaces.
The aim of this paper is to study the best approximation of unbounded functions in the
weighted spaces
,
1, 0 ,
p
p L α
α ≥>.
Key Words: Weighted space, unbounded functions, monotone approximation
Background: Inguinal hernias are a common medical problem that can significantly decrease the quality of life.Repair of inguinal hernia is one of the commonest surgical procedures worldwide irrespective of the country, race, or socioeconomic state. The inguinal hernia repair has been a controversial area in surgical practice from the time it has been conceived. Laparoscopic inguinal hernia repair has shown a great deal of promise as a treatment for the condition.
Objectives: To compare the outcome of laparoscopic versus open inguinal hernia mesh repair in terms of operative time , analgesics requirement , postoperative complication , hospital stay and return to daily activities and work.
Patients and methods: A prospective study of
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces.
Sufficient conditions for boundary controllability of nonlinear system in quasi-Banach spaces are established. The results are obtained by using the strongly continuous semigroup theory and some techniques of nonlinear functional analysis, such as, fixed point theorem and quasi-Banach contraction principle theorem. Moreover, we given an example which is provided to illustrate the theory.
The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show More