Preferred Language
Articles
/
ijs-2155
Bayesian Adaptive Bridge Regression for Ordinal Models with an Application
...Show More Authors

In this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
...Show More Authors

We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter  which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Proposed Wavelet and Forecasting Wind Speed with Application
...Show More Authors

Time series analysis is the statistical approach used to analyze a series of data. Time series is the most popular statistical method for forecasting, which is widely used in several statistical and economic applications. The wavelet transform is a powerful mathematical technique that converts an analyzed signal into a time-frequency representation. The wavelet transform method provides signal information in both the time domain and frequency domain. The aims of this study are to propose a wavelet function by derivation of a quotient from two different Fibonacci coefficient polynomials, as well as a comparison between ARIMA and wavelet-ARIMA. The time series data for daily wind speed is used for this study. From the obtained results, the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Multivariate data points in spatial statistics with application
...Show More Authors

This paper  deals  to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Aggregate production planning using linear programming with practical application
...Show More Authors

Abstract :

The study aims at building a mathematical model for the aggregate production planning for Baghdad soft drinks company. The study is based on a set of aggregate planning strategies (Control of working hours, storage level control strategy) for the purpose of exploiting the resources and productive capacities available in an optimal manner and minimizing production costs by using (Matlab) program. The most important finding of the research is the importance of exploiting during the available time of production capacity. In the months when the demand is less than the production capacity available for investment. In the subsequent months when the demand exceeds the available energy and to minimize the use of overti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Multi-objectives probabilistic Aggregate production planning with practical application
...Show More Authors

In this research, has been to building a multi objective Stochastic Aggregate Production Planning model for General al Mansour company Data with Stochastic  demand under changing of market and uncertainty environment in aim to draw strong production plans.  The analysis to derive insights on management issues regular and extra labour costs and the costs of maintaining inventories and good policy choice under the influence medium and optimistic adoption of the model of random has adoption form and had adopted two objective functions total cost function (the core) and income and function for a random template priority compared with fixed forms with objective function and the results showed that the model of two phases wit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Smoothing Image using Adaptive Median Filter
...Show More Authors

Median filter is adopted to match the noise statistics of the degradation seeking good quality smoothing images. Two methods are suggested in this paper(Pentagonal-Hexagonal mask and Scan Window Mask), the study involved modified median filter for improving noise suppression, the modification is considered toward more reliable results. Modification median filter (Pentagonal-Hexagonal mask) was found gave better results (qualitatively and quantitatively ) than classical median filters and another suggested method (Scan Window Mask), but this will be on the account of the time required. But sometimes when the noise is line type the cross 3x3 filter preferred to another one Pentagonal-Hexagonal with few variation. Scan Window Mask gave bett

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 26 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Role Lean Accounting in Support Corporate Governance to Achieve a Competitive Advantage: An Application Study in Diala State Company for Electrical industrial
...Show More Authors

        The modern business environment has witnesses tremendous developments as a result of the globalization of markets and economic openness and technological as well as the acquisition of the issue of corporate governance of great importance regarding it as one of the global innovations trends of control provisions on the management of companies as result of these developments ,increasing on competition between economic unit ,thus a decrease in market share because they do not take into account the response to the requirements of customers ,which kept her to search a modern management accounting methods to help them keep up with the changes and the availability of information for the various adminis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data
...Show More Authors

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 15 2015
Journal Name
Al Mustansyriah Journal Of Science
Comparison between (ARIMA) and (ANNs) models for estimating the relative humidity for Baghdad city
...Show More Authors

The aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.

Publication Date
Thu Apr 01 2021
Journal Name
Pakistan Journal Of Statistics
Estimation intensity radiation of chest X-ray (CXR) with application
...Show More Authors

In this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where  < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency

Preview PDF
Scopus