In this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreIn the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.
Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.
In this paper, two parameters for the Exponential distribution were estimated using the
Bayesian estimation method under three different loss functions: the Squared error loss function,
the Precautionary loss function, and the Entropy loss function. The Exponential distribution prior
and Gamma distribution have been assumed as the priors of the scale γ and location δ parameters
respectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initial
estimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlo
simulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian esti
The purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show MoreA new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reli
... Show MoreAbstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreThe Internet of Things (IoT) has become a hot area of research in recent years due to the significant advancements in the semiconductor industry, wireless communication technologies, and the realization of its ability in numerous applications such as smart homes, health care, control systems, and military. Furthermore, IoT devices inefficient security has led to an increase cybersecurity risks such as IoT botnets, which have become a serious threat. To counter this threat there is a need to develop a model for detecting IoT botnets.
This paper's contribution is to formulate the IoT botnet detection problem and introduce multiple linear regression (MLR) for modelling IoT botnet features with discriminating capability and alleviatin
... Show MoreThe stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show MoreIn this paper, the oscillation of a Hematopoiesis model in both cases delay and non-delay are discussed. The place and are continuous pstive -rdic functions. In the nn-dlay cse, we will exhibit that a nonlinear differential equation of hematopoiesis model has a global attractor for all different pstive solutions. Also, in the delay case, the sufficient conditions for the oscillation of all pstive solutions of it aboutare presented and we establish sufficient cnditions for the global attractive of. To illustrate the obtained results some examples are given.