This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step option (OPSO) are used to improve the discrete classical control (DSCC). Finally, some illustrative examples for the problem are given to show the accuracy and efficiency of the methods.
The aim of this investigation is to present the idea of SAH – ideal , closed SAH – ideal and closed SAH – ideal with respect to an element , and s- of BH – algebra .
We detail and show theorems which regulate the relationship between these ideas and provide some examples in BH – algebra .
ان السبب الرئيسي لاختيار الموضوع كونه من الاساليب الادارية الحديثة التي تهدف الى انجاح المنظمة او الشركة المبحوثة, اذ تمثلت مشكلة البحث في ما دور الادارة بالرؤية المشتركة في تعزيز التسويق الابداعي بالشركة المبحوثة, يهدف البحث الى تسليط الضوء على مفهوم الادارة بالرؤية المشتركة وانعكاساتها على التسويق الابداعي للمنظمة ، باعتبارها منهج اداري حديث يسهم في تغيير وتجديد وتطوير واقع المنظمة المبحوثة( الشرك
... Show More