Neuroimaging is a description, whether in two-dimensions (2D) or three-dimensions (3D), of the structure and functions of the brain. Neuroimaging provides a valuable diagnostic tool, in which a limited approach is used to create images of the focal sensory system by medicine professionals. For the clinical diagnosis of patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the accurate identification of patients from normal control persons (NCs) is critical. Recently, numerous researches have been undertaken on the identification of AD based on neuroimaging data, including images with radiographs and algorithms for master learning. In the previous decade, these techniques were also used slowly to differentiate AD and MCI symptoms from structure classification methods. This review focuses on neuroimaging studies conducted to detect and classify AD, through a survey based on Google Scholar content. We explore the challenges of this field and evaluate the performance of these studies along with their negative aspects.
Emotion could be expressed through unimodal social behaviour’s or bimodal or it could be expressed through multimodal. This survey describes the background of facial emotion recognition and surveys the emotion recognition using visual modality. Some publicly available datasets are covered for performance evaluation. A summary of some of the research efforts to classify emotion using visual modality for the last five years from 2013 to 2018 is given in a tabular form.
Nowadays, there are a huge number of video colorization methods. This is because in the gray scale image one value (gray) must be converted into three corresponding values (RGB). In this paper, some of these methods have been presented and discussed. Then, different comparisons have been established between these methods and the results demonstrate the efficiency of each method.
In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show MoreThe effect of mental and physical health on the feelings of subject welfare is known as health-related quality of life. The chronic obstructive pulmonary disease is a common respiratory diseases. Assessment of health-related quality of life is considered important in such chronic disease. The objective of the current study was to measure health-related quality of life in a sample of chronic obstructive pulmonary patients in AL- Diwanyia city/Iraq. This study was carried out on 150 already diagnosed COPD patients who attended to the Center of Respiratory Diseases/AL-Diwaniyah Teaching Hospital during September 2019 to January 2020. The Arabic version of St George’s Respiratory Questionnaire was used to asses
... Show MoreOsteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin
... Show MoreDiabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreIn this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An -type of disease in prey is considered. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.